首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
采用5%的高氯酸乙醇溶液对TC4钛合金进行电解抛光,测得了相应的电解抛光特征曲线。随抛光温度升高,电解抛光特性曲线上拐点处对应的分解电压先减小后增大,20℃时达到最低。借助场发射扫描电镜(FE-SEM)分析了抛光电压、搅拌和抛光时间等参数对TC4钛合金抛光效果的影响,借助EBSD技术验证了抛光效果。TC4钛合金的最佳电解抛光条件:电解抛光温度20℃、电压28 V、电流密度0.98 A/cm2、搅拌、电解抛光时间25 s。  相似文献   

3.
本文提供了电解抛光中不锈钢阴极的局部溶解实况,并对此种现象的实质进行了初步探讨.认为这种有别于"阴极保护"效应的现象,系阴极上局部产生过大电位差所致;并提出应如实地把这种电解池中局部强烈溶解的阴极视为一种"双性电极"——"外阴极双性电极".  相似文献   

4.
何敏  朱易捷  赵恩兰  颜林泉 《表面技术》2020,49(10):338-345
目的 为在导电单相金属中获得高质量EBSD试样表面,研究电解抛光法制备铝合金试样的方法,并提供理论支持。方法 基于Jacquet黏膜模型和金属阳极原理,提出利用阳极极化曲线、电流-时间曲线和扫描电镜二次电子图像获得电解抛光工艺参数,批量制备铝合金EBSD试样的理论方法。采用恒电位法中的静态法记录稳定的电压-电流走势,以获得电流稳定的实验时间,在90 s内进行各电压下的电解抛光实验,获得电压与稳定电流的对应关系,并绘制阳极极化曲线。电流由持续稳定转至持续上升后的斜率与电压横坐标相交处为理论最低分解电压值。结合扫描电镜二次电子图像在最低分解电压以上观察抛光表面。结果 获得最优抛光电压值为31 V。利用电流随时间的变化曲线,结合黏膜模型分析,并通过扫描电镜二次电子图像验证,最优电压下的最佳抛光时间为12 s,该值是电流-时间曲线中的电流最低点。此工艺使制备的铝合金EBSD样品标定率为97%,是理想的电解抛光工艺。结论 采用阳极极化曲线获得的最优电压和最优电压下的最小电流规律由Jacquet黏膜模型支持,其所获得的电解抛光工艺能够制备出优质的样品表面,也能够为其他金属块体导电材料和其他需要电解抛光的实验类型提供获得最佳电解抛光工艺值的理论方法。  相似文献   

5.
金属玻璃薄膜是在金属玻璃的基础上发展出来的一种新型薄膜材料,一方面继承无序原子排列结构所赋予的优异物理、化学和机械性能,另一方面有可能通过调整物理气相沉积工艺,构筑界面,制备纳米结构金属玻璃薄膜,克服块体金属玻璃的本征脆性.近年来,金属玻璃薄膜在各个领域快速发展,引起广泛的关注,已经成为新的研究热点.本文主要通过回顾最...  相似文献   

6.
为回收利用TiCl_4生产过程中产生的过细高钛渣,在CaCl_2熔盐中以预烧成形的过细高钛渣为阴极,采用固体透氧膜法(SOM法)直接电解制备金属钛,并研究了在1100℃、3.5 V电压下,高钛渣阴极的电脱氧历程和杂质的去除行为。结果表明:随着电解时间延长,阴极片逐渐收缩,孔隙率下降,颗粒尺寸增大,且电解6 h得到金属钛表明SOM法具自有较高的电流效率。过细高钛渣电脱氧历程为:TiO_2→CaTiO_3→Ca(Ti_2O_4)→TiO→Ti,而Al、Mn、Fe、Si等杂质通过电解得到相应单质且大部分进入CaCl_2熔盐,少量残留经稀盐酸洗涤被去除。  相似文献   

7.
一、前言铌及其合金的室温延性良好且较软,电子束熔炼的纯铌和低强度铌合金更是如此,因而在磨制金相试样过程中,其表面层极易发生冷加工硬化。在割切和磨平这类合金试  相似文献   

8.
本方法确定了用NaF-K2TiF6熔体中的TiO2通过熔盐电解法探究直接电解TiO2制备金属钛的可行性。首先通过比较不同摩尔比NaF-K2TiF6体系中的初晶温度,并采用Leco氧分析法测定了TiO2在NaF-K2TiF6体系中的溶解度(饱和浓度),选择较为合适的熔盐体系,并通过恒流电解法研究了四价钛的电还原行为。结果表明在830℃时摩尔比为1.5∶1时TiO2在熔盐体系中的饱和浓度为10.2%,并对该熔盐体系进行热力学计算,发现当以活性炭作为阳极时钛的氧化物相较于氟化物的理论分解电压低,即氧化物会优先反应,通过恒流电解实验发现在电解温度为830℃,阴极电流密度为1 A/cm2时可以得到金属钛,其中TiO2的还原机理可能是通过TiO2→TiO→Ti2O→Ti三步还原反应还原为金属钛。  相似文献   

9.
用化学镀镍方法将金属粉末颗粒包埋、经磨片及离子减薄制成的透射电镜薄膜样品有宽阔的薄区视场。观察了粉末颗粒的显微组织。对镀前粉末颗粒的活化处理及化学镀镍方法进行了分析。结果表明:用化学镀镍的方法可以将高硬度的粉末颗粒制成透射电镜薄膜样品。  相似文献   

10.
由于钛合金材料强度硬度较高,机械抛光通常不能去除试样表面的残余应变层,因而采用电解抛光是制备电子背散射衍射试样的理想方法。本研究通过正交试验进行优选,并对优选的电解抛光工艺参数进行调整,制定出了钛合金电子背散射衍射试样的快速制备工艺。  相似文献   

11.
线切割加工中常见工艺问题分析与解决办法   总被引:1,自引:0,他引:1  
鲍中美 《机床与液压》2007,35(3):225-225,109
针对线切割加工中断丝与频繁短路、切割速度慢及加工表面粗糙度差、硬质合金类材料加工效果差、铝材加工效果差等常见工艺问题,经过分析并结合生产实践,给出科学有效的解决办法.  相似文献   

12.
引言由于钛及其合金具有强度高和良好的耐腐蚀性能,它们作为一和结构材料已日益广泛地用于人们的日常生活及航空、航海、化工的各个方面。近年来,钛及其合金的理论  相似文献   

13.
金属诱导法制备多晶硅薄膜的研究进展   总被引:6,自引:0,他引:6  
多晶硅薄膜材料已广泛应用于太阳能电池和集成电路制造等领域。本文综述了金属诱导非晶硅薄膜进行低温晶化的研究,讨论了金属诱导法的晶化机理,分析了金属诱导晶化过程中的主要影响因素,对不同的金属诱导法进行比较,展望了金属诱导法的进一步发展。  相似文献   

14.
15.
系统综述了国内外采用金属预置层后硒化法制备Cu(In,Ga)Se2(CIGS)薄膜的研究进展,重点从预置层制备过程中靶材的选择、叠层方式以及后硒化过程中硒源种类和硒化方式的选择等几个方面对各种工艺的优点、存在的问题和可能的解决方案进行讨论,并对金属预置层后硒化法的发展前景和趋势进行了展望。  相似文献   

16.
硫酸甲醇体系中电解抛光钽的实验研究   总被引:1,自引:0,他引:1  
采用硫酸甲醇体系对钽进行电解抛光,并对其抛光性能进行了研究,测定了不同配比时电解液中钽的阳极极化曲线,研究了电解液配比和电压对钽表面质量的影响.在搅拌速率为16 m/s、电解液温度为0℃、时间为3 min、硫酸甲醇体积比为1:7时,电压在20 V左右抛光效果较好、钽表面均方根粗糙度Rq小于30 nm,不仅能够满足钽材表面精饰加工需求,而且能够满足EOS靶用标准材料薄膜对表面质量要求.  相似文献   

17.
熔盐电解制备难熔金属的现状与展望   总被引:1,自引:0,他引:1  
介绍了传统的熔盐电解法用于难熔金属制备的应用现状,分析了其存在的弊病:主要是传统熔盐电解法对电解质要求严格,难以找到合适的熔盐.而新开发的熔盐电解法--FFC法和SOM法,都从一定程度上降低了电解过程对电解质的要求,成为熔盐电解制备难熔金属发展的新方向,是低成本、连续化、无污染生产难熔金属的可行之路.上海大学综合分析了FFC法和SOM法的优缺点,提出了一种改良的SOM法,该方法有效避免了FFC法中的缺点,并在制备Ti,Ta,Cr上取得成功.  相似文献   

18.
介绍了机械搅拌法制备金属及其复合材料的工艺及特性,综述了机械搅拌法对金属及其复合材料在凝固过程和凝固组织中的影响.提出机械搅拌法是改善金属及其复合材料凝固组织,提高其性能的有效途径,并对机械搅拌凝固细晶技术的前景进行了展望.  相似文献   

19.
本文针对透射电镜(TEM)金属样品机械减薄较为困难的问题,设计了一种简单便捷的套筒式机械磨薄装置,并且以铜片样品为例详细介绍了样品减薄的便捷方法和过程。采用新型装置的便捷方法可以在较短时间内制备40~70μm厚的金属薄片。与TEM制样传统方法相比,具有效率较高、不易产生机械损伤、均匀减薄的特点,完全符合TEM的制样要求,而且特别适合于稀有小试样的磨薄。  相似文献   

20.
磁控溅射法制备二氧化钒薄膜及其性能表征   总被引:2,自引:0,他引:2  
采用射频反应磁控溅射法在镀有SiO2膜的钠钙硅玻璃基片上沉积了二氧化钒(VO2)薄膜.研究了在300℃沉积温度下,不同溅射时间(5~35min)对VO2薄膜结构和性能的影响.用X射线衍射、扫描电镜、自制电阻测量装置、紫外-可见光谱仪、双光束红外分光光度计对薄膜结构、形貌、电学及光学性能进行了表征.结果表明:薄膜在低温半导体相主要以四方相畸变金红石结构存在,在(011)方向出现明显择优取向生长,随着溅射时间的延长,晶粒生长趋于完整,晶粒尺寸增大;对溅射时间为35 min的薄膜热处理,发现从室温到90℃范围内,薄膜方块电阻的变化接近3个数量级;由于本征吸收,薄膜在可见光范围透过率较低,且随膜厚的增加而逐渐降低;在1500~4000 cm-1波数范围内,原位测量薄膜样品加热前后(20和80℃)的红外反射率,发现反射率的变化幅度随着膜厚增加而提高,最高可达59%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号