首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of membrane property on the permeate flux, membrane fouling and quality of clarified pineapple juice were studied. Both microfiltration (membrane pore size of 0.1 and 0.2 μm) and ultrafiltration (membrane molecular weight cut-off (MWCO) of 30 and 100 kDa) membranes were employed. Membrane filtration did not have significant effects on the pH, reducing sugar and acidity of clarified juice whereas the suspended solids and microorganism were completely removed. The 0.2 μm membrane gave the highest permeate flux, total vitamin C content, total phenolic content and antioxidant capacity as well as the highest value of irreversible fouling. Based on these results, the membrane with pore size of 0.2 μm was considered to be the most suitable membrane for the clarification of pineapple juice. The optimum operating conditions for the clarification pineapple juice by membrane filtration was a cross-flow velocity of 3.4 ms−1 and transmembrane pressure (TMP) of 0.7 bar. An average flux of about 37 lm−2 h−1 was obtained during the microfiltration of pineapple juice under the optimum conditions using batch concentration mode.  相似文献   

2.
Johannes de Bruijn 《LWT》2006,39(8):861-871
The purpose of this work was to study the fouling mechanisms of a Carbosep® M8 membrane during the cross-flow ultrafiltration of apple juice. A new fouling model has been developed that simultaneously considers membrane blocking within the pores, at the pore mouths and by cake formation at the membrane surface. Membrane fouling by apple juice was due to internal pore blocking as well as cake formation. When operating ultrafiltration at a transmembrane pressure of 150 kPa and a cross-flow velocity of 7 m/s, fouling was minimal with a gradual decrease of the relative contribution of cake formation; however, transmembrane pressure still exceeds critical pressure. The fouling model predicts no cake formation at a cross-flow velocity of 7.4 m/s and a transmembrane pressure of 150 kPa or at a cross-flow velocity of 7.0 m/s and a transmembrane pressure of 120 kPa. Under these conditions, internal membrane blocking would be the only mechanism responsible for the decrease of permeate flux.  相似文献   

3.
Tangerine (Citrus reticulata blanco) juice clarification by crossflow microfiltration and ultrafiltration using polysulphone flat sheet membranes with nominal molecular weight cut off of 25,000, 50,000, 100,000 and 0.1 μm, 0.2 μm pore sizes was studied. the juice was pretreated by polygalacturonase and pH adjustment. the treated juice was clarified with a laboratory scale filtration unit with effective filtration area of 14 cm2. Filtration conditions were transmembrane pressure of 93 to 194 kPa, crossflow velocity of 0.96 to 3.5 m/s and 25°C. Membrane performance was evaluated in terms of volume flux and clarity (% transmittance) of the permeate. Pretreatment of the juice by polygalacturonase and adjustment to pH 2 with HCl resulted in a clearer supernatant than enzyme treatment alone. Maximum flux was obtained with the 0.1 μm microfiltration membrane. Flux increased with transmembrane pressure and crossflow velocity. Flux at 194 kPa and 3.5 m/s was 69 L per square meter per hour. Permeate clarity was better at higher transmembrane pressure and lower velocity, due to the effect of the polarized/fouling layer of solute on the membrane surface, which acted as a secondary “dynamic” filter.  相似文献   

4.
The combinatorial optimality of membrane morphology and process parameters during dead end microfiltration of bottle gourd juice have been addressed in this article. Saw dust and kaolin based low cost ceramic membranes with varied morphology have been chosen to evaluate upon their microfiltration performance. For the chosen membranes, fresh, paper filtered and centrifuged juice samples were considered along with transmembrane pressure differential as process parameters. Combinatorial optimality was based on flux decline trends, fitness of fouling models, irreversible and reversible fouling data, irreversible permeation resistance and nutritional analysis of the permeate samples. An interesting feature of the article had been with respect to feed constitution playing a critical role in influencing the optimal choice of membrane morphology and transmembrane pressure differentials. Among all cases, paper filtered bottle gourd juice, 0.75 μm membrane and 137.9 kPa transmembrane pressure were found to be the best choice in terms of minimal irreversible fouling, lowest protein content, good clarity, good polyphenol and antioxidant activity in the permeate and appropriate flux.  相似文献   

5.
Clarification of fruit and vegetable juice is one of the integrated parts of modern industrial juice processing. This paper describes the clarification of tomato juice through microfiltration process. In this regard, the influence of transmembrane pressure (1, 2 and 3 bar), cross‐flow velocity which corresponds with Reynolds number (300, 1500 and 2500) and temperature (30, 40 and 50 °C) on permeate flux and some properties of clarified juice such as colour, turbidity, density, viscosity, pH and total soluble solid have been studied. The results revealed that the investigated parameters had an increasing effect on the permeate flux and colour and the greatest effect on the permeate flux and colour was supplied by cross‐flow velocity. The other permeate properties did not significantly change with variations of the operating parameters. Eventually, the statistical analysis indicated that the interactional effect of cross‐flow velocity and TMP on the permeate flux was significant.  相似文献   

6.
A microfiltration process with a tubular ceramic membrane was applied for clarification of pineapple wine. The process was operated with the membrane pore size of 0.2 μm at transmembrane pressure of 2 bar and crossflow velocity of 2.0 m/s. The effects of gas sparging on permeate flux, fouling and quality of clarified wine were studied. It was found that a relatively low gas sparging rate could increase permeate flux up to 138%. Further increase of the gas sparging rate did not improve permeate flux compared with that without gas sparging. Gas sparging affected the density of cake layer. Increasing gas sparging rate led to an increase in specific cake resistance. It was observed that increasing gas sparging rate could reduce reversible fouling rather than irreversible fouling. The turbidity of pineapple wine was reduced and a clear product with bright yellow color was obtained after microfiltration. The negative effect of gas sparging which caused a loss of alcohol content in the wine was also observed.  相似文献   

7.
New mineral membranes of ceramic (Ceraflo) and carbon (Carbone Lorraine), were used for apple juice clarification using cross flow microfiltration. Effect on performance of the parameters transmembrane pressure, inlet flow velocity, membrane nature, and temperature were studied. Optimum permeate flux was at a transmembrane pressure of about 3.5 bar for both membranes. Formation of a concentration layer of rejected particles was reduced by using techniques backwashing and pulsating inlet flow. These techniques provided a major flux restoration and steady state permeate flux increased by 30–50% with backwash and up to 100% with pulsating inlet flow.  相似文献   

8.
The effects of the operating conditions on the crossflow microfiltration (CFMF) of particulate suspensions were investigated. Lactalbumin particles were used as the feed material. Experiments were carried out in constant transmembrane pressure (TMP) mode using tubular ceramic membrane modules. All important parameters (internal and surface fouling, cake mass, height, porosity, and particle size distribution (PSD)) were estimated to provide a more complete understanding of the process than has been attempted before. Lactalbumin particles which are highly irregular in shape and widely size distributed formed an adhesive cake on the membrane surface during CFMF. The porosity and particle size of the deposited cake decreased with time of filtration. The value 100 kPa was found to be optimum with respect to the permeate flux in the studied range of TMP. Particle size classification effects of TMP and crossflow velocity (CFV) were demonstrated. The results of this study provided a possible explanation to the contradictory reports on the effect of CFV on the steady-state flux and the time required to obtain it. Significantly, the internal fouling first decreased with increasing CFV and then increased above 1.5 m s−1. This is attributed to the particles size classification effect of CFV. A process was developed based on the observed effects of the operating parameters on the CFMF performance that enables operation at very low internal fouling and high flux for as long as 160 min. The developed process has the potential to become commercial if coupled with backflushing.  相似文献   

9.
Clarification is the first step of inulin production from chicory juice, and membrane filtration as an alternative can greatly simplify this process, increase juice yield, improve product quality, and reduce the cost and waste volume. In this study, a rotating disk module (RDM) was used to investigate the clarification of chicory juice by four micro- and ultrafiltration membranes. Compared with dead end filtration, the RDM had a much higher permeate flux and product quality. High rotating speeds produced high permeate fluxes and reduced flux decline, because of the strong back transport of foulant from fouling layer to feed solution. At high rotating speeds of 1500–2000 rpm, the permeate flux increased with membrane pore size and transmembrane pressure (TMP), while at low rotating speeds (<1000 rpm), permeate flux was independent of membrane type and TMP due to a thick deposited fouling layer as a dominant filtration resistance, while carbohydrate transmission decreased at higher TMP because of denser cake layer as an additional selective membrane. The highest carbohydrate transmission (∼98%) and desirable permeate turbidity (2.4 NTU) was obtained at a TMP of 75 kPa and a rotating speed of 2000 rpm for FSM0.45PP membrane. With the RDM, the Volume Reduction Ratio (VRR) could reach 10 with a high permeate flux (106 L m−2 h−1) in the concentration test, and permeate was still rich in carbohydrate and well clarified. Chemical cleaning with 0.5% P3-ultrasil 10 detergent solution was able to recover 90% water flux of fouled membrane.  相似文献   

10.
In this study, the performance of two membranes were compared – tubular ceramic and hollow fiber poly(imide) – under transmembrane pressure of 0.5 and 1 bar, for the clarification of passion fruit pulp pre-treated by centrifugation and enzymatic treatment at the concentrations of 150 and 300 ppm. Nutritional and sensorial qualities of the clarified juice obtained were evaluated. Thus, it was possible to observe that the most adequate condition for the clarification of passion fruit pulp was with enzymatic treatment at 150 ppm and its posterior microfiltration at the ceramic tubular membrane of 0.3 μm with transmembrane pressure of 0.5 bar. The fouling mechanism was identified by estimation of model parameters according to a nonlinear regression by Bayesian inference. Analysis of the fouling mechanism results revealed that hollow fiber membrane is controlled by a cake filtration mechanism, and internal pore blocking fouling mechanism controls ceramic tubular membrane.  相似文献   

11.
Physical removal of microorganisms from skim milk by microfiltration (MF) is becoming increasingly attractive to the dairy industry. Typically, this process is performed at temperatures of approximately 50°C. Additional shelf-life and quality benefits might be gained by conducting the MF process at low temperatures. Cold MF could also minimize microbial fouling of the membrane and prevent the germination of thermophilic spores. The objective of this study was to optimize a cold MF process for the effective removal of microbial and somatic cells from skim milk. An experimental MF setup containing a tubular Tami ceramic membrane with a nominal pore size of 1.4 μm was used for MF of raw skim milk at a temperature of 6 ± 1°C. The processing conditions used were cross-flow velocities of 5 to 7 m/s, and transmembrane pressures of 52 to 131 kPa. All MF experiments were performed in triplicate. The permeate flux was determined gravimetrically. Microbiological, chemical, and somatic cell analyses were performed to evaluate the effect of MF on the composition of skim milk. The permeate flux increased drastically when velocity was increased from 5 to 7 m/s. The critical transmembrane pressure range conducive to maximum fluxes was 60 to 85 kPa. When MF was conducted under optimal conditions, very efficient removal of vegetative bacteria, spores, and somatic cells, as well as near complete transmission of proteins into the MF milk, was achieved. To further enhance the flux, a CO2 backpulsing system was developed. This technique is able both to increase the flux and to maintain it steadily for an extended period of time. The CO2-aided cold MF process has the potential to become economically attractive to the dairy industry, with direct benefits for the quality and shelf life of dairy products.  相似文献   

12.
Microfiltration of bitter gourd (Momordica charantia) extract using hollow fiber membrane module was carried out in the present study. To identify the dominant fouling mechanism, flux decline behavior was examined using Field model. At lower transmembrane pressure, pore blocking mechanism was found to be more important, while cake filtration was dominant at higher pressure. Higher cross flow rate reduced filtration constant indicating slower rate of membrane fouling. Additionally, surface and particle size analyses were undertaken to validate the findings of modeling. Scanning electron microscope analysis clearly showed prevalence of pore blocking mechanism at lower transmembrane pressure drop, whereas cake filtration was dominant fouling mechanism at higher pressure. Fourier transform infrared spectroscopy analysis supported the role of cake layer as a secondary membrane retaining some amount of polyphenols. Analysis of flux decline ratio also confirmed that for transmembrane pressure of 104 kPa and beyond, cake layer became compact, and hence, increase in cross flow rate was unable to influence the improvement of permeate flux. The current study provides an insight into the fouling mechanism involved in scaling up of clarification of bitter gourd extract for successful processing of this medicinal herb.  相似文献   

13.
Raw milk (about 500 kg) was cold (4°C) separated and then the skim milk was pasteurized at 72°C and a holding time of 16 s. The milk was cooled to 4°C and stored at ≤4°C until processing. The skim milk was microfiltered using a pilot-scale ceramic graded permeability (GP) microfilter system equipped with 0.1-µm nominal pore diameter ceramic Membralox membranes. First, about 155 kg of pasteurized skim milk was flushed through the system to push the water out of the system. Then, additional pasteurized skim milk (about 320 kg) was microfiltered (stage 1) in a continuous feed-and-bleed 3× process using the same membranes. The retentate from stage 1 was diluted with pasteurized reverse osmosis water in a 1:2 ratio and microfiltered (stage 2) with a GP system. This was repeated 3 times, with total of 3 stages in the process (stage 1 = microfiltration; stages 2 and 3 = diafiltration). The results from first 3 stages of the experiment were compared with previous data when processing skim milk at 50°C using ceramic uniform transmembrane pressure (UTP) membranes. Microfiltration of skim milk using ceramic UTP and GP membranes resulted in similar final retentate in terms of serum proteins (SP) removed. The SP removal rate (expressed by kilogram of SP removed per meter-squared of membrane area) was higher for GP membranes for each stage compared with UTP membranes. A higher passage of SP and SP removal rate for GP than UTP membranes was achieved by using a higher cross-flow velocity when processing skim milk. Increasing flux in subsequent stages did not affect membrane permeability and fouling. We operated under conditions that produced partial membrane fouling, due to using a flux that was less than limiting flux but higher than critical flux. Because the critical flux is a function of the cross-flow velocity, the difference in critical flux between UTP and GP membranes resulted only from operating under different cross-flow velocities (6.6 vs 7.12 for UTP and GP membranes, respectively). Conditions that allow microfiltration operation at higher flux will reduce the membrane surface area required to process the same amount of milk in the same length of time. Less membrane surface area reduces investment costs and uses less energy, water, and chemicals to clean the microfiltration system.  相似文献   

14.
Membrane distillation is an emerging membrane process based on evaporation of a volatile solvent. One of its often stated advantages is the low flux sensitivity toward concentration of the processed fluid, in contrast to reverse osmosis. In the present paper, we looked at 2 high-solids applications of the dairy industry: skim milk and whey. Performance was assessed under various hydrodynamic conditions to investigate the feasibility of fouling mitigation by changing the operating parameters and to compare performance to widespread membrane filtration processes. Whereas filtration processes are hydraulic pressure driven, membrane distillation uses vapor pressure from heat to drive separation and, therefore, operating parameters have a different bearing on the process. Experimental and calculated results identified factors influencing heat and mass transfer under various operating conditions using polytetrafluoroethylene flat-sheet membranes. Linear velocity was found to influence performance during skim milk processing but not during whey processing. Lower feed and higher permeate temperature was found to reduce fouling in the processing of both dairy solutions. Concentration of skim milk and whey by membrane distillation has potential, as it showed high rejection (>99%) of all dairy components and can operate using low electrical energy and pressures (<10 kPa). At higher cross-flow velocities (around 0.141 m/s), fluxes were comparable to those found with reverse osmosis, achieving a sustainable flux of approximately 12 kg/h·m2 for skim milk of 20% dry matter concentration and approximately 20 kg/h·m2 after 18 h of operation with whey at 20% dry matter concentration.  相似文献   

15.
陶瓷膜在甘油发酵液除菌中的应用   总被引:1,自引:0,他引:1  
将陶瓷膜应用于甘油发酵液的除菌操作中,考察了操作参数和清洗方法对膜通量的影响。结果表明,在压差0.1MPa、温度30℃、pH值7.0和错流速度3.5m/s条件下操作,有利于提高膜通量;发酵液过滤后,先以质量浓度为1%的NaOH和质量浓度为0.2%的NaClO混合液清洗膜40min,再以质量浓度为0.5%的HNO3溶液清洗5min,膜通量可迅速恢复。因此,陶瓷膜在甘油发酵液的除菌中是高效可行的。  相似文献   

16.
膜分离技术在菠萝汁澄清中的应用研究   总被引:2,自引:1,他引:2  
采用超滤膜和微滤膜对菠萝汁进行膜分离澄清实验,研究了不同操作参数(如压力、温度和时间)对膜分离效率及膜的清洗的影响,并对膜分离效果进行评价。结果表明,膜分离菠萝汁的最佳工作条件为:操作压力为0.06MPa,温度45℃;PVDF微滤膜的抗污染能力比PS超滤膜强,清洗后膜透水速率的恢复率达到了97.8%;膜分离可基本保留菠萝汁中的营养成分,有效去除果汁中的大分子物质、微生物和部分色素,大大改善了菠萝汁的外观品质和微生物指标。  相似文献   

17.
In this study, the flux decline mechanisms were identified during membrane clarification of red plum juice at several processing parameters, including pore size, membrane type, transmembrane pressure, temperature and velocity. The results were used to investigate the effect of changes in operating conditions on the intensity of membrane fouling. Also, scanning electron microscopy (SEM) was used for analysing fouling‐layer morphology. These results showed that the main mechanism responsible for membrane fouling was cake formation (over 95% fitness) occurring in the first stage of the process. Intermediate, standard and complete blockings were formed during most of the runs as filtration proceeded. The results also indicated that increasing the temperature from 30 to 40 °C was the most effective factor in decreasing cake‐layer fouling, reducing it by about 66.7%. Furthermore, an increase in processing velocity of up to 0.5 m s?1 had the greatest effect on intermediate blocking, reducing it by about 86.1%. Also, increasing pressure up to 2.9 bar completely eliminated standard blocking and complete blocking. Finally, microstructure analysis of membrane using SEM confirmed that cake formation had the greatest impact on membrane fouling.  相似文献   

18.
The practical application of microfiltration in brewing industry is hindered by severe membrane fouling and subsequent permeate flux decline. A theoretical and experimental study on the effect of operating parameters, which influence the crossflow microfiltration of beer and beer quality was performed. A mathematical model is developed to better understanding of the fouling layer characteristics. The experiments were conducted for different ranges of pressures, temperatures and shear rates. An optimum transmembrane pressure of 1.1 bar is suggested to maximize both the steady state and average permeate fluxes. The results of numerical simulation were in a good accordance with the experimental data.  相似文献   

19.
Recovery of bioactive compounds in kiwifruit juice by ultrafiltration   总被引:1,自引:0,他引:1  
Food quality is not only a function of nutritional values but also of the presence of bioactive compounds exerting a positive effects on human health.This research was undertaken to study the influence of the ultrafiltration (UF) on the composition of some bioactive compounds of the kiwifruit juice in order to develop a natural product which can be used to fortify foods and beverages. At the same time the effect of transmembrane pressure (TMP) and temperature on the permeate flux was also investigated in order to identify the optimal operating conditions for the processing of the juice. An optimal TMP value occurred at 0.6–0.65 bar in different conditions of cross flow velocities. Steady-state permeate fluxes increased linearly with temperature in the range 20–30 °C.The kiwifruit juice was clarified in optimal operating conditions, according to the batch concentration mode, up to a final volume reduction factor (VRF) of 2.76.The analyses of flux decay according to fouling models reported in the literature revealed that the formation of a cake layer covering the entire surface of the membrane is the main cause of the membrane fouling.Most bioactive compounds of the depectinised kiwifruit juice were recovered in the clarified fraction of the UF process. The rejection of the UF membrane towards total phenolics was 13.5%. The recovery of glutamic, folic, ascorbic and citric acids, in the clarified juice, with respect to the initial feed, was dependent on the final VRF of the UF process: an increase of the VRF determines an increase of these compounds in the clarified juice. The rejections of the UF membrane towards these compounds were in the range 0–4.3%.

Industrial relevance

Among different substances contained in the kiwifruit a primary role, in the safeguard of the human health, is carried out by some bioactive compounds such as ascorbic, folic, citric, glutamic acids and polyphenols.This research was undertaken to study the influence of ultrafiltration on the composition of these compounds in order to develop a natural product which can be used to fortify foods and beverages.  相似文献   

20.
Nondestructive (NDT) and noninvasive ultrasonic techniques have long been used to evaluate the properties and especially the thickness of thin layers. Here, we use this technique adding a new approach to investigate microfiltration of paper mill wastewater, which gives an unexpected sensitivity in the detection of membrane fouling. In situ ultrasonic reflections data can indicate an early fouling deposition at about 30 s after filtration starts, evident by an initial decline in permeate flux. By producing differential signals, obtained by comparing reference and testwaveforms, the fouling process can be detected and monitored. A linear relationship between fouling resistance and the amplitude of differential signals exists. In the case of fouling layer thickness, the resolution exceeds the theoretical limit of h/lambda +/- 0.25, where h is the layer thickness and lambda is the wavelength. When using differential signals, excellent results for thickness measurements were obtained, down to h/lambda = 0.04. Measurements on wavelet transforms support the findings and add quantitative information on other physical properties such as density and porosity of fouling layers and the fouling process. Measurement of early fouling allows (automated) remedial methods to be applied so as to maintain a high flux and therefore improve the filtration process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号