首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The structural integrity of steam generators in nuclear power plants is much dependent on the fretting wear characteristics of Inconel 690 U-tubes. The influence function method for the tube-to-plate contact model is demonstrated in this study to investigate the fretting wear problems on the secondary side of the steam generator, which are caused by flow induced vibrations between the U-tubes and supports. Two-dimensional numerical contact model is developed and formulated in terms of the Cauchy singular integral equation. The distributions of normal pressures, shear stresses and displacement fields are derived between two contact bodies which have similar elastic properties. Based on the algorithms for normal pressures and relative slip, a numerical approach is developed to simulate the fretting wear of tube-to-plate contacts. The work rate model is adopted in this study to find the wear amounts between two materials. The results are compared with the solutions by finite element analyses to validate the application of the present method to fretting wear problems.  相似文献   

2.
Study on transition between fretting and reciprocating sliding wear   总被引:2,自引:0,他引:2  
G. X. Chen  Z. R. Zhou   《Wear》2001,250(1-12):665-672
An experimental investigation was conducted to find the associated changes in characteristics of wear before and after the transition between fretting and reciprocating sliding wear. A set of experiments were carried out using a AISI 52100 steel ball rubbing against a plate specimen made from the same steel under dry condition. Wear coefficient, wear volume, coefficient of friction, profile of the scars and wear debris were analyzed. The results displayed that there were significant differences in wear coefficient, wear volume, profile of the wear scars and wear debris before and after the transition. Wear coefficient and wear volume at a constant sliding distance were found to be the most appropriate for identifying the transition amplitude between fretting and reciprocating sliding wear.  相似文献   

3.
Fretting wear proceeds through particle detachment from the contacting surfaces which, while trapped in the contact zone, can affect the frictional and wear response. Ball-on-flat fretting experiments were carried out between steel specimens under gross slip regime. A transition in the coefficient of friction was linked to a critical contact pressure. The microstructure and chemical composition of the third body evolve with the applied pressure. The evolution of the friction coefficient is strongly dependent on the third body properties. The wear is controlled by the applied load and thus the real contact area within the wear track.  相似文献   

4.
Dovetail joints between fan blades and the disk of turbine engines are subjected to fretting. The objective of this research is to realize wear prediction by computational methods. The goal is obviously the estimation of wear kinetics, but also to obtain worn surfaces, and permit the manufacturer to realize complementary design analyses with worn surfaces. A wear law developed for titanium alloy and based on the friction dissipated energy is used. A computational method based on a three scale analysis is presented. The originality consists of coupling a semi-analytical (SA) contact solver with the FE method for the structural behavior, allowing a fine discretization of the contact zone. Contact computations are fast enough to realize cyclic wear computations. Results for the blade/disk system are exhibited.  相似文献   

5.
C.H.H. Ratsimba  H.P. Soh 《Wear》2004,257(11):1193-1206
A methodology to predict fretting wear in complex couplings is described and validated against results obtained from a reduced scale aeroengine-type spline coupling subjected to complex cyclic load cases. The methodology uses three-dimensional finite element analysis, together with coefficient of friction data obtained from stroke controlled round-against-flat fretting tests, to determine spline tooth contact pressure and slip distributions; the latter as a function of number of loading cycles. A modified Archard equation is used to calculate wear depths from the contact pressure and slip distributions using wear coefficients obtained from the round-against-flat fretting tests. The slip distributions, and, concomitantly, the wear distributions, are found to depend strongly on the coefficient of friction, which, in turn, depends on the state of lubrication and number of loading cycles. For constant coefficient of friction, the slip distributions stabilise quickly with increasing numbers of loading cycles. The methodology predicts greater wear under lightly lubricated conditions than without added lubrication for the essentially load-controlled tests on the reduced scale aeroengine-type coupling. The wear depth trends are predicted correctly, both axially along the spline teeth and around the tooth flank, and the predicted wear depths bracket the measured values, dependent on the lubrication conditions considered; the latter attributable to the sensitivity of spline wear to the evolving coefficient of friction during testing. The methodology provides a basis for further development.  相似文献   

6.
An experimental study torsional fretting behaviors of LZ50 steel   总被引:1,自引:0,他引:1  
Four simple fretting modes are defined according to relative motion: tangential, radial, rotational, and torsional fretting. This paper presents a new test rig that was developed from a low-speed reciprocating rotary system to show torsional fretting wear under ball-on-flat contact. Torsional fretting behavior was investigated for LZ50 steel flats against AISI52100 steel balls under various angular displacement amplitudes and normal loads. The friction torques and dissipation energy were analyzed in detail. Two types of Tθ curves in the shape of quasi-parallelograms and ellipticals were found that correspond to gross and partial slips, respectively. The experimental results showed that the dynamic behavior and damage processes depend strongly on the normal loads, angular displacement amplitudes, and cycles. In this paper, the debris and oxidation behaviors and detachment of particles in partial and gross slip regimes are also discussed. Debris and oxidation are shown to have important roles during the torsional fretting processes. The wear mechanism of torsional fretting was a combination of abrasive and oxidative wear and delamination before third-body bed formation. The mechanism was then transformed into third-body wear after a great amount of debris formed.  相似文献   

7.
Fretting fatigue behavior of unpeened and shot-peened Ti–6Al–4 V was investigated using a dual-actuator test setup which was capable of applying an independent pad displacement while maintaining a constant cyclic load on the specimen. The fretting regime was identified based on the shape of the hysteresis loop of tangential force versus relative slip range and the evolution of normalized tangential force. The fretting regime changed from stick to partial slip and then to gross slip with increasing relative slip range, and the transition from partial to gross slip occurred at a relative slip range of 50–60 μm regardless of the applied cyclic load, surface treatment, contact load and contact geometry. The fretting fatigue life initially decreased as the relative slip range increased and reached a minimum value, and then increased with increase of the relative slip range due to the transition in fretting regime from partial slip to gross slip. Shot-peened specimens had longer fatigue life than unpeened specimens at a given relative slip range, but the minimum fatigue life was found to be at the same value of relative slip range for both shot-peened and unpeened specimens. Tangential force was directly related to relative slip and this relationship was independent of other fretting variables.  相似文献   

8.
This paper presents a numerical model that maps the evolution of contact pressure and surface profile of Hertzian rough contacting bodies in fretting wear under partial slip conditions. The model was used to determine the sliding distance of the contacting surface asperities for one cycle of tangential load. The contact pressure and sliding distance were used with Archard's wear law to determine local wear at each surface asperity. Subsequently, the contact surface profile was updated due to wear. The approach developed in this study allows for implementation of simulated and/or measured real rough surfaces and study the effects of various statistical surface properties on fretting wear. The results from this investigation indicate that an elastic–perfectly plastic material model is superior to a completely elastic material model. Surface roughness of even small magnitudes is a major factor in wear calculations and cannot be neglected.  相似文献   

9.
三环减速器偏心套微动磨损分析   总被引:9,自引:0,他引:9  
崔建昆  张光辉 《机械设计》1996,(12):31-32,39
三环减速器在运转过程中产生磨损及发热的原因是作用于偏心套上的交变转矩在平键联接处产生的微动现象。本文提出了消除微动磨损的有效措施。  相似文献   

10.
A friction energy formalism is considered and adapted to formalize the fretting wear responses of adhesive wear and non-adhesive wear interfaces. It is shown that for non-adhesive wear tribocouples like hard coatings (TiN, TiC, etc.) the wear kinetics can be formalized using the accumulated friction dissipated energy. By contrast, adhesive wear contacts involving aluminium and titanium alloys display a critical dependance regarding the applied sliding amplitude. The wear kinetics of such systems is captured by considering a sliding reduced energy wear formulation. A combined composite energy wear formulation is then introduced to formalize the fretting wear response whatever the tribocouple behaviour. It is shown that a local approach, focusing on wear depth analysis, is required to predict interface durability. A FEM investigation demonstrates that the wear depth kinetics can be predicted by considering the accumulated energy density. It concludes that interface durability can be related to a single energy density capacity variable (χ) defined as the maximum accumulated energy density which can be dissipated in the interface before contact failure.  相似文献   

11.
C.H. Hager Jr.  J.H. Sanders  S. Sharma 《Wear》2008,265(3-4):439-451
Plasma-sprayed Al–bronze or CuNiIn coatings are often applied to protect against fretting wear and extend the operational life of Ti-alloy compressor blades in turbine engines. In order to develop a fundamental understanding of how these coating systems perform under gross slip fretting conditions, bench level fretting wear tests were conducted at room temperature to simulate cold engine startup. Alternative coatings such as plasma-sprayed molybdenum and nickel were also evaluated because of their potential for reducing fretting wear under certain simulated engine conditions. The combination of scanning electron microscopy (SEM), surface profilometry, surface chemistry (EDS), and friction analysis were used to study coating performance and evaluate the interfacial wear mechanisms. In this study, it was determined that all coatings caused significant damage to the mating Ti6Al4V surfaces and that the wear mechanisms were all similar to those of the uncoated baseline case.  相似文献   

12.
Zirconium alloys are highly desirable in nuclear applications due to their transparency to thermal energy neutrons and for their high corrosion resistance. The main objective of this study is to investigate the fretting wear mechanism of Zr–2.5%Nb alloy. The experimental work was carried out in air at 265 °C, using a specially designed fretting wear tribometer. The transfer of material, the change in the wear volume and the maximum wear depth with the number of cycles were measured through 3D mapping of the topography of the fretted surface. SEM and Fourier Transform Infrared Interferometry methods were used to examine the microspall pits and to measure the distribution of the thickness of oxide layer in the fretting region. For relatively small slip amplitude, the results showed that the fretting wear mechanism is initially dominated by adhesion and abrasion actions and then by delamination and surface fatigue. The time variation of the wear losses was shown to be cyclic until a steady state value is reached. At high slip amplitudes, however, abrasion and delamination are the only dominant wear mechanisms. The volumetric wear losses were found to decrease monotonically with the number of cycles. A novel approach was introduced, whereby the thermal and electrical contact resistances of the fretting interface are simultaneously measured. The results demonstrated the potential use of this non-intrusive approach for real-time monitoring of the fretting wear mechanism.  相似文献   

13.
On the mechanisms of various fretting wear modes   总被引:1,自引:0,他引:1  
According to relative motion directions for a ball-on-flat contact, there are four fundamental fretting wear modes, e.g., tangential, radial, torsional and rotational modes. In this paper, the mechanisms of these four fundamental fretting wear modes, particularly for the later three modes, have been reviewed from results obtained by the authors in combination with results from literature. Some general features have been reported. Differences both in running and degradation behavior have been discussed in detail. Results showed that some similar laws for three fretting regimes (partial slip regime, mixed regime and slip regime), fretting maps (running condition fretting map and material response fretting map), wear and cracking mechanisms obtained from the classic mode (i.e. tangential fretting) were also identified and useful to characterize the other modes. Nevertheless, the occurrence of relative slip for the radial fretting, the formation of mixed regime for the torsional fretting, the evolution of surface morphology for the rotational fretting were quite different compared to that of the classical fretting mode.  相似文献   

14.
A. Pasanen  R. Rabb 《Wear》2009,267(12):2200-2207
Tangential traction caused by friction in contacting surfaces is a major factor in fretting fatigue that increases stress levels and leads to a reduction in fatigue life. Friction in fretting contact was studied in partial, mixed and gross slip conditions on quenched and tempered steel. Measurements were made with sphere-on-plane contact geometry for polished and ground surfaces. Friction was evaluated from on-line energy ratio and, after the tests, from wear marks. A maximum friction coefficient of over 1.0 was measured at mixed slip zone with polished surfaces, whereas ground surfaces promote lower values in similar operating conditions. The friction coefficient dependence on load cycles and loading frequency is also presented and briefly discussed. The friction data and understanding thus gained is to be used for evaluation of crack initiation with the numerical fretting fatigue model.  相似文献   

15.
Recently, material of Inconel 690TT (thermal treatment) for the steam generator tubes in a nuclear power plant was substituted for the existing material of Inconel 600HTMA (high temperature mill-annealing). Inconel 690TT has more chromium than Inconel 600HTMA in order to improve the corrosion resistance. In this study, to evaluate the friction and wear characteristics of Inconel 690TT under fretting condition, the fretting tests as well as sliding tests were carried out in air and in elevated temperature water environment, respectively. Fretting tests of the cross-cylinder type were done under various applied normal loads, and sliding tests of pin-on-disk type were also carried out to compare with the results of the fretting test. In summary, the results of the fretting tests correlated with the results of the sliding tests. The wear mechanism of Inconel 690TT in air was delamination wear and the mechanism in water was affected by micro-pitting. Also, it was found that the fretting wear coefficients in water were increased with increase in the temperature of water.  相似文献   

16.
Carbon ions with different doses of 2×1015 and 2×1016 ions/cm2 were implanted into single crystal silicon wafers under an energy level of 80 keV. The nanohardness and elastic modulus of silicon wafers were studied on the nano-mechanical testing system. The fretting wear tests were performed on the UMT-2 Micro-tribometer to evaluate the fretting wear resistance of C+ implanted silicon wafer and to investigate its micro-tribological properties. The results demonstrate that the nanohardness and elastic modulus of silicon wafer with dose of 2×1015 ions/cm2 decreased and those of 2×1016 ions/cm2 changed little. Implanted silicon wafer with dose of 2×1016 ions/cm2 had much lower coefficient of friction and wear volume under low loads, which suggests a significant effect of friction-reducing and anti-wear. The results also indicate that abrasive wear was the main wear mechanism for both virgin silicon and C+ implanted silicon with dose of 2×1015 ions/cm2. However, adhesive wear played a significant role in the wear mechanism of the C+ implanted silicon with dose of 2×1016 ions/cm2 under the low loads, while the abrasive wear dominated the wear mechanism under high loads.  相似文献   

17.
18.
Fretting wear is an accumulation of damage that occurs at component interfaces that are subjected to high contact stresses coupled with low-amplitude oscillation. In metallic contacts, surface oxides, adhesion, and material transfer play a primary role in the initial stages of fretting wear degradation. Given these behaviors, the focus of this study was to determine the effect of temperature on inter-metallic fretting wear between Ti6Al4V (titanium, 6% aluminum, 4% vanadium) and cold-sprayed, commercially pure nickel coatings. The results presented herein show that increased temperature decreases friction through the formation of a uniform NiO layer, and by a reduction of Ni2O3 in contacts. In addition, it was found that a localized minimum friction coefficient is achieved at approximately 300 °C, above which friction increases slightly due to annealing of the cold-sprayed coatings.  相似文献   

19.
C.H. Hager Jr.  J. Sanders  S. Sharma  A.A. Voevodin 《Wear》2009,267(9-10):1470-1481
In metallic contacts, surface oxides, adhesion, and material transfer play a primary role in the initial stages of fretting wear degradation. Given this behavior, the focus of this study was to mitigate fretting wear within Ti6Al4V contacts at room temperature and 450 °C with the use of thermally sprayed nickel graphite composite coatings with 5–20% graphite. The results show that the embedded graphite particles reduced the friction of the nickel thermal sprayed coatings during both low and high temperature fretting wear experiments. Friction and wear mechanisms are discussed with correlations of contact chemistry, morphology, and mechanical performance. Wear on the mated Ti6Al4V surfaces was reduced by the formation of uniform transfer films that were identified as graphitic based at room temperature and NiO based at 450 °C.  相似文献   

20.
In this work, fretting maps of various surface modifications were established based on the friction logs of fretting experiments. The fretting fatigue resistance of the coatings was analyzed according to the features of the fretting maps of the coatings. The results showed clearly that fretting maps of materials are effective tools to predict the fretting fatigue properties of substrates and surface-modification coatings. It was also demonstrated that the fretting fatigue resistance of a 1045 steel substrate could be improved to different extents through surface modification. The fretting fatigue resistance of solid lubricating coatings was the best and the tendency for initiation and propagation of cracks in the substrate material could also be restrained by depositing hard coatings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号