首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
A novel triptycene-based dianhydride, 1,4-bis[4-(3,4-dicarboxylphenoxy)]triptycene dianhydride, was prepared from 4-nitro-N-methylphthalimide and potassium phenolate of 1,4-dihydroxytriptycene (1). The aromatic nucleophilic substitution reaction between 4-nitro-N-methylphthalimide and 1 afforded triptycene-based bis(N-methylphthalimide) (2), which hydrolyzed and subsequently dehydrated to give the corresponding dianhydride (3). A series of new polyimides containing triptycene moieties were prepared from the dianhydride monomer (3) and various diamines in m-cresol via conventional one-step polycondensation method. Most of the resulting polyimides were soluble in common organic solvents, such as chloroform, THF, DMAc and DMSO. The polyimides exhibited excellent thermal and thermo-oxidative stabilities with the onset decomposition temperature and 10% weight loss temperature ranging from 448 to 486 °C and 526 to 565 °C in nitrogen atmosphere, respectively. The glass transition temperatures of the polyimides were in the range of 221-296 °C. The polyimide films were found to be transparent, flexible, and tough. The films had tensile strengths, elongations at break, and tensile moduli in the ranges 95-118 MPa, 5.3-16.2%, and 1.03-1.38 GPa, respectively. Wide-angle X-ray diffraction measurements revealed that these polyimides were amorphous.  相似文献   

2.
Chin-Ping Yang  Yu-Yang Su 《Polymer》2005,46(15):5797-5807
A series of organosoluble and light-colored polyimides (III) was prepared from 2,3,3′,4′-biphenyltetracarboxylic dianhydride (α-BPDA) with various fluorinated aromatic bis(ether amine)s via two-step method with thermal or chemical imidization of poly(amic acid)s yielded polyimides. The III series had inherent viscosity of 0.74-1.01 dl/g and showed excellent solubility in a variety of organic solvents. They were soluble in the amide polar solvent, ether-type solvent, and chlorinated solvent. These polyimide films also showed a high optical transparency and less color intensity, with an ultraviolet-visible absorption edge of 369-382 nm and low b* values (a yellowness index) of 5.0-11.7. Glass-transition temperature of the III series was recorded at 244-319 °C and higher than the isomeric polyimides V series. Compared with the nonfluorinated polyimides IV, the III series showed lighter-colored and lower dielectric constants and moisture absorptions. The good tensile properties and excellent thermal properties of the III series were also observed.  相似文献   

3.
Chin-Ping Yang  Yu-Yang Su 《Polymer》2005,46(15):5778-5788
A series of polyimides IIIa-h characterized by colorlessness, high transparency, high solubility, and good mechanical property, was synthesized from the aromatic dianhydride, 2,5-bis(3,4-dicarboxyphenoxy)-t-butylbenzene dianhydride (I), and various aromatic diamines (IIa-h) with pendent trifluoromethyl group via polyaddition, chemical imidization, and direct cast films. The III series showed more colorless than the polyimides (V and VI series) of 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (6FDA) contained, the VI series was synthesized from the II with 6FDA. These films III had cut-off wavelengths between 371 and 376 nm, as well as b* value (a yellowness index) ranging from 3.0 to 4.7. In fact, it is so far the most colorless aromatic polyimide in our systematical researches. The III series had inherent viscosity ranging from 0.72 to 1.33 dL/g and showed excellent solubility in a variety of organic solvents. They were soluble in a concentration of 5-10% in the amide polar solvent, ether solvent, and chlorinated solvent. These films showed strength tensile of 97-123 MPa, dielectric constants of 2.78-3.28 (1 MHz), and moisture absorptions of 0.11-0.36 wt%. The glass transition temperature of the III series was recorded at 214-259 °C, the 10% weight loss temperature was over 468 °C, and the residue was more than 47% at 800 °C in nitrogen.  相似文献   

4.
A new diamine monomer containing heterocyclic pyridine and triphenylamine groups, 4-(4,4′-diaminotriphenylamine)-2,6-bis(4-methylphenyl)pyridine (4), was synthesized by Chichibabin and nucleophilic fluoro-displacement reactions. The diamine was used to prepare a series of novel polyimides via polycondensation with various aromatic tetracarboxylic dianhydrides in N-methyl-2-pyrrolidinone. The polyimide 4a derived from the diamine 4 with 4,4′-hexafluoroisopropylidenediphthalic anhydride and having high Tg (313 °C), mechanical, and thermal properties was soluble in various organic solvents, such as N-methyl-2-pyrrolidinone, N,N-dimethylacetamide, N,N-dimethylformamide, pyridine, chloroform, tetrahydrofuran, at room temperature. The polyimide (4a) could be cast into a self-standing film from DMAc solution and was thermally converted into tough and flexible film. The film had high tensile modulus of 2.2 GPa and exhibited excellent thermal stability in both nitrogen and air (Td10 > 550 °C). The pristine polymer exhibited the UV-vis absorption bands in the region 240-400 nm and protonated polymer exhibited absorption in the region 390-500 nm. The protonated polymer possessed strong orange fluorescence (around 600 nm) in THF solution after protonation with acids as excited at 438 nm. The fluorescent intensity was influenced by the acid concentrations and the chemical structure of conjugated bases. The fluorescent intensity at 600 nm increased as acid concentration from a lower to a moderate concentration and decreased at higher concentrations.  相似文献   

5.
Chin-Ping Yang 《Polymer》2006,47(20):7021-7033
Two series of novel polyimides (5a-g and 6a-g) containing flexible ether linkages and pendent trifluoromethyl (CF3) groups were synthesized from 1,4-bis(3,4-dicarboxyphenoxy)benzene dianhydride (3a) and 1,3-bis(3,4-dicarboxyphenoxy)benzene dianhydride (3b) with various CF3-substituted aromatic bis(ether amine)s (4a-g) via ring-opening polyaddition to poly(amic acid)s, followed by thermal or chemical imidization. These polyimides were readily soluble in a variety of organic solvents and could be solution-cast into flexible and tough films. The cast films exhibited high optical transparency and almost no color, with a UV-vis absorption edge of 368-382 nm and a very low b value (a yellowness index) of 6.2-15.5. They had good thermal stability with glass-transition temperatures of 186-288 °C, and most of them did not show significant decomposition before 500 °C. Moreover, these polyimide films also possessed low dielectric constants of 2.79-3.49 (at 1 MHz) and low water uptakes (<0.65 wt%).  相似文献   

6.
Nanwen Li  Zhiming Cui  Suobo Zhang  Wei Xing 《Polymer》2007,48(25):7255-7263
A series of sulfonated polyimides containing benzimidazole groups were synthesized using 4,4′-binaphthyl-1,1′,8,8′-tetracarboxylic dianhydride (BTDA), 4,4′-diaminodiphenyl ether-2,2′-disulfonic acid (ODADS) as the sulfonated diamine, and 2-(3′,5′-diaminophenyl)benzimidazole (a) or 6,4′-diamino-2-phenylbenzimidazole (b) as the nonsulfonated diamine. The electrolyte properties of the synthesized polyimides (Ia − x, Ib − x, x refers to molar percentage of the sulfonated diamine) were investigated and compared with those of polyimides (Ic − x) from BTDA, ODADS, and m-phenylenediamine (c). All synthesized polyimides possessed high molecular weights revealed by their high viscosity, and formation of tough and flexible membranes. Polyimides with benzimidazole groups exhibited much better swelling capacity than those without benzimidazole groups. This was attributed to the strong interchain interaction through basic benzimidazole functions and sulfonic acid groups. The sulfonated polyimides that are incorporated with 1,1′,8,8′-binaphthalimide exhibited better hydrolytic stability than that with 1,4,5,8-naphthalimide. Polyimide membranes with good water stability as well as high proton conductivity were developed. Polyimide membrane (Ia − 90), for example, did not lose mechanical properties after being soaked in boiling water for 1000 h, while its proton conductivity was still at a high level (compared to that of Nafion 117).  相似文献   

7.
C.P Yang  Y.Y Su 《Polymer》2003,44(20):6311-6322
A colorless fluorinated diamine, 3′-trifluoromethyl-3,4′-oxydianiline (3′-CF3-3,4′-ODA) (II) was prepared through the nucleophilic substitution reaction of 3-nitrophenol and 2-chloro-5-nitrobenzotrifluoride by catalytic reduction with hydrazine and Pd/C. A series of Polyimides V were synthesized from the diamine II with various aromatic dianhydrides IIIa-f via thermal and chemical imidization. These polyimides had inherent viscosities ranging from 0.88 to 1.12 dl/g. A comparison of V, VI to analogous polyimides VII, VIII. VI, VII and VIII was based on 3′4-ODA, 3-CF3-4,4′-ODA, 4,4′-ODA, respectively. In terms of the color of PI revealed that the color intensity of phenoxy-containing amine of the meta-structure and the para-structure with the CF3 group would fell off color intensity. The color intensity of the four polyimide series was lessened in the following order: V>VII>VI>VIII. The solubility of V is better than VI, VII and VII. The polyimide V films had a tensile strength ranging from 124 to 147 MPa, elongation at break from 9 to 65%, and initial modulus from 2.3 to 2.8 GPa. The glass transition temperature of polymers was recorded at 234-313 °C. They had 10% weight loss at a temperature above 515 °C and left more than 50% residue even at 800 °C in nitrogen. Compared with polyimides VI, V showed the lower dielectric constants of 2.80-3.50 (40 MHz), and moisture absorptions in the range of 0.44-1.02 wt%.  相似文献   

8.
To investigate the difference of the trifluoromethyl (CF3) group and ether group affecting the optical property of fluorinated polyimides (PIs), we prepared 4,4′-bis(4-amino-2-trifluoromethylphenoxy)diphenyl ether (4) with three ether groups and 2,2-bis[4-(4-amino-2-trifluoromethylphenoxy)phenyl]hexafluoropropane (5) with four CF3 groups with 2-chloro-5-nitrobenzotrifluoride and 4,4′-dihydroxydiphenyl ether or 2,2-bis(4-hydroxyphenol)hexafluoropropane. Two series of organosoluble and light-colored PIs (4a-4c, 5a-5c) were synthesized from 4 and 5 with various aromatic dianhydrides: 3,3,4,4-benzophenonetetracarboxylic dianhydride (BTDA) (a), 4,4-oxydiphthalic anhydride (ODPA) (b), and 4,4-hexafluoroisopropylidenediphthalic anhydride (6FDA) (c), prepared through a typical two-step polymerization method. These PIs were soluble in amide polar solvents and even in less polar solvents. The glass-transition temperatures (Tg) of 4a-5c were 221-249 °C and the 10% weight-loss temperatures were above 530 °C. Their films had cutoff wavelengths between 339 and 399 nm and yellowness index ranges from 1.95 to 42.60. The dielectric constants estimated from the average refractive indices are 2.59-2.93 (1 MHz). In a comparison of the PI series based on 4, 5, and 4,4′-bis(4-amino-2-trifluoromethylphenoxy)biphenyl (6), we found that the CF3 group and ether group on the diamine had almost same effect in lowering the color, but the ether group had better thermal stability. The color intensity of the three PI series was lowered in the following order: 6 > 4 > 5. The PI 5c, synthesized from diamine 5 and dianhydride c, had six CF3 groups in a repeated segment and ether group at the same time, so it exhibited the lightest color among the three series.  相似文献   

9.
New aromatic diamine with cyclohexane cardo group substituted with trifluoromethyl group in the side chain, 1,1-bis[4-(4-amino-2-trifluoromethylphenoxy)phenyl]cyclohexane (II), was prepared through the nucleophilic substitution reaction of 1,1-bis(4-hydroxyphenyl)cyclohexane and 2-chloro-5-nitrobenzotrifluoride in the presence of potassium carbonate, to yield the intermediate dinitro compound I, followed by catalytic reduction with hydrazine and Pd/C to afford the diamine II. Fluorinated polyimides (IVa-g) were prepared from the II with various aromatic dianhydrides via thermal or chemical imidization of poly(amic acid). These polyimides had inherent viscosity ranging from 0.72 to 1.16 dl/g and showed excellent solubility in a variety of organic solvents. They were soluble in a concentration of 10% in the amide polar solvent, and 1-5% in the other testing solvents. IV films showed good mechanical properties, excellent thermal stability. The 10% weight loss temperature was above 476 °C in nitrogen or air, and the glass transition temperature was recorded at 214-278 °C. In comparison of the IV series with the analogous nonfluorinated polyimides (V series) based on 1,1-bis[4-(4-aminophenoxy)phenyl]cyclohexane (II′), IV series revealed better solubility, lighter-colored and lower dielectric constants and moisture absorptions. Their films had cut-off wavelengths in the range of 364-414 nm, b* value (a yellowness index) ranging from 3.3 to 66.3, dielectric constants of 3.02-3.55 (1 MHz), with moisture absorption of 0.16-0.36 wt%.  相似文献   

10.
A series of aromatic polyimides with pendent triphenylamine group were synthesized from equimolar mixtures of 4,4′-oxydianiline (ODA) and 4-(3,5-diaminobenzamido)triphenylamine (4), 4-(3,5-diaminobenzamido)-4′,4″-di-tert-butyltriphenylamine (t-Bu-4) or 4-(3,5-diaminobenzamido)-4′,4″-dimethoxytriphenylamine (MeO-4) with two aromatic tetracarboxylic dianhydrides (DSDA or 6FDA) via a conventional two-step procedure that included a ring-opening polyaddition to give poly(amic acid)s, followed by chemical imidization. These polyimides exhibited good solubility in polar organic solvents and could be solution-cast into flexible and strong films. They showed excellent thermal stability, with Tg values in the range of 284–309 °C. The polyimides derived from diamines t-Bu-4 and MeO-4 exhibited reversible electrochemical oxidation, accompanied by strong color changes with high contrast ratio and electrochromic stability. For the polyimides derived from diamine 4, the coupling reaction between the triphenylamine radical cations occurred during the oxidative process forming a tetraphenylbenzidine structure, which resulted in an additional oxidation state and color change together with enhanced near-IR absorption at fully oxidized state.  相似文献   

11.
A series of high molecular weight, sulfonated polyimide copolymers (8a-f) with controlled acid contents have been obtained using 2,2′-bis(4-sulfobenzyloxy)benzidine (14) prepared via a flexible synthetic route. This series of novel sulfonated polyimide membranes were found to possess higher hydrolytic stability than polyimides in which the sulfonic acid groups are bound directly to the polymer main chain. An in-depth analysis of conductivity data was also performed for 8 and compared to the results for Nafion® (1), sulfonated poly(ether ether ketone) (2) and a main-chain sulfonated polyimide (3). In order to remove the influence of acid strength, the proton mobility value for 8 at infinite dilution was calculated and found to be 1.2(±0.6) × 10−3 cm2 s−1 V−1. A catalyst-coated membrane (CCM)-MEA based on a polyimide incorporating 60% sulfonated monomer (8d) was found to exhibit comparable beginning-of-life fuel cell performance as a Nafion®-based CCM MEA at 50 °C.  相似文献   

12.
Zhiming Qiu  Suobo Zhang 《Polymer》2005,46(5):1693-1700
A novel method for the preparation of 2,2′-diphenoxy-4,4′,5,5′-biphenyltetracarboxylic dianhydride have been investigated. This new dianhydride contains flexible phenoxy side chain and a twist biphenyl moiety and it was synthesized by the nitration of an N-methyl protected 3,3′,4,4′-biphenyltetracarboxylic dianhydride and subsequent aromatic nucleophilic substitution with phenoxide. The overall yield was up to 75%. The dianhydride was polymerized with five different aromatic diamines to afford a series of aromatic polyimides. The polyimide properties such as inherent viscosity, solubility, UV transparency and thermaloxidative properties were investigated to illustrate the contribution of the introduction of phenoxy group at 2- and 2′-position of BPDA dianhydride. The resulting polyimides possessed excellent solubility in the fact that the polyimide containing rigid diamines such as 1,4-phenylenediamine and 4,4′-oxydianiline were soluble in various solvents such as N-methyl-2-pyrrolidone, N,N-dimethylacetamide, dimethyl sulfoxide and chloroform. The glass-transition temperatures of the polymers were in the range of 255-283 °C. These polymers exhibited good thermal stability with the temperatures at 5% weight loss range from 470 to 528 °C in nitrogen and 451 to 521 °C in air, respectively. The polyimide films were found to be transparent, flexible, and tough. The films had a tensile strength, elongation at break, and Young's modulus in the ranges 105-168 MPa, 15-51%, 1.87-2.38 GPa, respectively.  相似文献   

13.
Polycondensation by Stille coupling of 2-decyl-4,7-dibromobenzimidazoles and N-methyl-2-decyl-4,7-dibromobenzimidazole with 2,5-bis(trimethylstannyl)thiophene and 5,5′-bis(trimethylstannyl)-2,2′-bithiophene gave the corresponding π-conjugated polymers, poly(2-decylbenzimidazole-4,7-diyl-thiophene-2,5-diyl) 1b, poly(2-decylbenzimidazole-4,7-diyl-bithiophene-2,5-diyl) 1c and poly(N-methyl-2-decylbenzimidazole-4,7-diyl-thiophene-2,5-diyl) 2b, in 98-99% yields. The polymers 1b and 2b were fully soluble in CF3COOH, and partially soluble in DMF (about 60 and 40% for 1b and 2b, respectively) and NMP (about 70 and 40%, respectively). The NMP soluble part of 1b and DMF soluble part of 2b gave values of 0.36 and 0.24 dl g−1 in NMP and DMF, respectively. The DMF soluble part of 1b, 1c and 2b showed absorption peaks at about 458, 465 and 388 nm, respectively, in DMF. In an alkaline medium the absorption peaks of 1b and 1c are shifted to a longer wavelength by 92-101 nm; the observed shifts in the acidic medium and alkaline medium were much larger than those observed with usual benzimidazoles with low molecular weights. Packing structures of 1b, 1c and 2b are discussed based on their XRD patterns.  相似文献   

14.
A series of aromatic copolyethers containing 1,3,4-oxadiazole rings and phthalide groups was prepared by nucleophilic substitution polymerization technique of phenolphthalein, 1, or of an equimolecular amount of 1 and different bisphenols 2, such as: 4,4′-isopropylidenediphenol, 4,4′-(hexafluoroisopropylidene)diphenol, 4,4′-(1,4-phenylene-diisopropylidene)bisphenol, 4,4′-cyclohexylidene-bisphenol and 2,7-dihydroxynaphthalene, with 2,5-bis(p-fluorophenyl)-1,3,4-oxadiazole, 3. The polymers were easily soluble in polar solvents such as N-methylpyrrolidone, N,N-dimethylacetamide, N,N-dimethylformamide and chloroform and can be cast from solutions into thin flexible films. They showed high thermal stability, with decomposition temperature being above 400 °C. The polymers exhibited a glass transition temperature in the range of 220-271 °C, with reasonable interval between glass transition and decomposition temperature. Electrical insulating properties of some polymer films were evaluated on the basis of dielectric constant and dielectric loss and their variation with frequency and temperature. The values of the dielectric constant at 10 kHz and 20 °C were in the range of 2.98-3.15.  相似文献   

15.
Man He  Jia Dai  Yiping Cui 《Polymer》2009,50(16):3924-2572
The novel fluorinated polyimides with side-chain nonlinear optical (NLO) chromophores were synthesized from hydroxyl polyimides, followed by the Mitsunobu reaction with NLO chromophores. Molecular structural characterization for the resulting polymers was achieved by 1H NMR, FT-IR, UV-Vis spectra, elemental analysis and gel permeation chromatography (GPC). The polymers exhibit excellent solubility in common organic solvents, good film-forming properties, high glass transition temperature (Tg) in the range from 193 to 200 °C and thermal stability up to 290 °C. The polyimides P1 and P2 containing hetarylazo chromophores with large hyperpolarizability possess a high electro-optic (EO) coefficient (r33), which is larger than that of the polyimide P3 attached DR1. Excellent temporal stability and low optical losses in the range of 1.9-2.1 dB/cm at 1.55 μm were observed for these polymers. Such new NLO fluorinated polyimides are distinguished by an excellent combination of NLO activity, temporal stability, and optical loss.  相似文献   

16.
Treatment of a dihydrosilane (methylphenylsilane, 1) with mixtures of a diyne (p- or m-diethynylbenzene, 2a or 2b) and a triyne (1,3,5-triethynylbenzene, 3a or B,B′,B″-triethynyl-N,N′,N″-trimethylborazine, 3b; 1:2:3=100:95:5, 100:90:10, 100:80:20) in the presence of Pd-PCy3 (Cy=cyclohexyl) catalyst gave new crosslinked silylenedivinylene polycarbosilanes. In TGA the resulting crosslinked polymers tended to show higher Td5 values and higher char yields than the corresponding linear polymers. On the other hand, UV/vis absorption spectra of the crosslinked polymers obtained in the reactions of 2a or 2b with 3a exhibited increased broad peaks around 390 nm for 2a or 360 nm for 2b. Coincidently, their fluorescence spectra showed significant increase of the emission peaks in 400-550 nm. The crosslinked polymer derived from 2a and 3b, however, showed decrease of the absorption peak around 390 nm and profound depression of fluorescence peaks in 400-550 nm.  相似文献   

17.
4-Vinylbenzyl glucoside peracetate (1) was copolymerized with divinylbenzene (DVB) using 1-phenyl-1-(2′,2′,6′,6′-tetramethyl-1′-piperidinyloxy)ethane (2) as an initiator in m-xylene at 138 °C for 20 h ([DVB]/[2]=28; [DVB]=0.62 mol L−1). The copolymerizations were performed using the mole fraction of 1 in the total feed of 1 and DVB (F1: [1]/[1]+[DVB]) ranging from 0.11 to 0.38 that produced the polystyrene (PSt) microgel with acetyl glucose, 3, in 46-53% yields. Dynamic laser light scattering (DLS) measurements showed that 3 was stably suspended in toluene as particles with average diameters (d's) ranging from 12 to 22 nm. A static laser light scattering (SLS) measurement gave the average molar mass, Mw,SLS, of 3 that ranged from 9.69×104 to 6.96×105. The numbers of the 1, 2, and DVB units in 3 (N1, N2, and NDVB, respectively) were from 111 to 238, from 17 to 208, and from 350 to 4510, respectively. The deacetylation of 3 was achieved by treatment with sodium methoxide in dry 1,4-dioxane to produce the PSt microgel with glucose as the hydrophilic segment, 4. The solubilities of 4 in toluene, CHCl3, THF, 1,4-dioxane, pyridine, DMF, DMSO, and H2O, and the mixture of H2O and 1,4-dioxane were examined, indicating that a hydrophilic property had been effectively introduced into 4.  相似文献   

18.
Two novel bis(amine anhydride) monomers, N,N′-bis(3,4-dicarboxyphenyl)-1,4-phenylenediamine dianhydride I and N,N′-bis(3,4-dicarboxyphenyl)-1,3-phenylenediamine dianhydride II, were prepared via palladium-catalyzed amination reaction of 4-chloro-N-methylphthalimide with 1,4-phenylenediamine or 1,3-phenylenediamine, followed by alkaline hydrolysis of the intermediate bis(amine imide)s and subsequent dehydration of the resulting tetraacids. A series of new poly(amine imide)s were prepared from the synthesized dianhydride monomers with various diamines in NMP via conventional two-step method. FT-IR spectra of the poly(amine imide)s revealed that in the solid state, intermolecular and intramolecular hydrogen bonding (N-H?OC) are present. These polymers had glass transition temperatures in the range of 250-295 °C. The 10% weight loss temperature of the resulting poly(amine imide)s ranged from 539 to 560 °C in nitrogen. The poly(amine imide)s have the peel strength values ranging from 283 to 358 N/m. The poly(amine imide)s films were found to be transparent, flexible, and tough. The films had a tensile strength, elongation at break, and tensile modulus in the ranges 102-152 MPa, 11.3-19.6%, and 1.04-2.08 GPa, respectively.  相似文献   

19.
Two new asymmetric diamines (1-2) were prepared via a facile, one-pot procedure. Based on diamine (1-2), a series of asymmetric polyimides (3-4) were prepared in NMP/xylene by high-temperature solution polymerization. The resulting polyimides are readily soluble in some organic solvents, and can be solution casted into flexible and creasable films. An intramolecular charge complex mechanism was proposed to the structure-optical transparency relationship. Polyimides 3-4 display high-Tg (319-401 °C), high moduli (2.40-7.20 GPa), moderate coefficient of thermal expansion (38-53 ppm/°C), and excellent flame retardancy. These results show that the introduction of the asymmetric structure is an effective way to improve organo-solubility while maintaining thermal properties. Because of these properties, polyimides 3-4 can be considered as excellent high-Tg and flame-retardant materials for microelectronic applications.  相似文献   

20.
A series of novel organosoluble polyimides and copolyimides with a propeller-shaped triarylamine unit were prepared from diamine and various aromatic dianhydrides via direct polycondensation. All of the polymers possessed tough, flexible, and strong films with high molecular weights. The polyimide and copolyimide films revealed electrochromic characteristics, with a color change from pale yellowish at its neutral state, to green, and finally to blue at its oxidized state, at applied potentials ranging from 0 to 1.50 V. The polyimide (Ib) film exhibited switching times of 4.5 s at 1.08 V at 424 and 877 nm and 1.9 s for fast bleaching due to a pendent substituted 2-phenyl-2-isopropyl group. Cyclic voltammetry (CV) of the polymer films showed two reversible redox couples at potentials of 0.91-0.99 V and 1.30-1.38 V, respectively. The CV results of the model compound M1 and model polyimide M2, were not a match to the oxidation peaks of polyimide Ib, indicating that the contribution of the oxidation was not only from the electron removal of nitrogen atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号