首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Chin-Ping Yang 《Polymer》2006,47(20):7021-7033
Two series of novel polyimides (5a-g and 6a-g) containing flexible ether linkages and pendent trifluoromethyl (CF3) groups were synthesized from 1,4-bis(3,4-dicarboxyphenoxy)benzene dianhydride (3a) and 1,3-bis(3,4-dicarboxyphenoxy)benzene dianhydride (3b) with various CF3-substituted aromatic bis(ether amine)s (4a-g) via ring-opening polyaddition to poly(amic acid)s, followed by thermal or chemical imidization. These polyimides were readily soluble in a variety of organic solvents and could be solution-cast into flexible and tough films. The cast films exhibited high optical transparency and almost no color, with a UV-vis absorption edge of 368-382 nm and a very low b value (a yellowness index) of 6.2-15.5. They had good thermal stability with glass-transition temperatures of 186-288 °C, and most of them did not show significant decomposition before 500 °C. Moreover, these polyimide films also possessed low dielectric constants of 2.79-3.49 (at 1 MHz) and low water uptakes (<0.65 wt%).  相似文献   

2.
Eric Fossum  Loon-Seng Tan 《Polymer》2005,46(23):9686-9693
A series of poly(ether ketone) copolymers were prepared by nucleophilic aromatic polymerization reactions of 4-fluoro-4′-hydroxybenzophenone, 2, in the presence of varying percentages of ABn monomers based on a triarylphosphine oxide platform, 1a (2F), 1b (4F), and 1c (6F), where A=OH and B=F. As expected, the crystallinity of the samples decreased with an increasing ABn content. However, the tetrahedral geometry of the phosphine oxide-based ABn monomers proved to be much more efficient at lowering the melt temperature of the copolymers than was the corresponding ketone-based ABn monomer, 3,5-bis(4-fluorophenylbenzoyl)phenol, 4, that possesses a structure more similar to that of 2. Polymerization of 2 in the presence of as little as 5 mol% of bis-(3,4,5-trifluorophenyl)-(4-hydroxyphenyl)phosphine oxide, 1c (6F), afforded a completely amorphous polymer with a glass transition temperature of 168 °C that was soluble in hot NMP and DMSO. The copolymers also exhibited excellent thermoxidative stability with a number of samples displaying 5% weight loss temperatures, in air, well in excess of 500 °C.  相似文献   

3.
Polycondensation by Stille coupling of 2-decyl-4,7-dibromobenzimidazoles and N-methyl-2-decyl-4,7-dibromobenzimidazole with 2,5-bis(trimethylstannyl)thiophene and 5,5′-bis(trimethylstannyl)-2,2′-bithiophene gave the corresponding π-conjugated polymers, poly(2-decylbenzimidazole-4,7-diyl-thiophene-2,5-diyl) 1b, poly(2-decylbenzimidazole-4,7-diyl-bithiophene-2,5-diyl) 1c and poly(N-methyl-2-decylbenzimidazole-4,7-diyl-thiophene-2,5-diyl) 2b, in 98-99% yields. The polymers 1b and 2b were fully soluble in CF3COOH, and partially soluble in DMF (about 60 and 40% for 1b and 2b, respectively) and NMP (about 70 and 40%, respectively). The NMP soluble part of 1b and DMF soluble part of 2b gave values of 0.36 and 0.24 dl g−1 in NMP and DMF, respectively. The DMF soluble part of 1b, 1c and 2b showed absorption peaks at about 458, 465 and 388 nm, respectively, in DMF. In an alkaline medium the absorption peaks of 1b and 1c are shifted to a longer wavelength by 92-101 nm; the observed shifts in the acidic medium and alkaline medium were much larger than those observed with usual benzimidazoles with low molecular weights. Packing structures of 1b, 1c and 2b are discussed based on their XRD patterns.  相似文献   

4.
New aromatic diamine with cyclohexane cardo group substituted with trifluoromethyl group in the side chain, 1,1-bis[4-(4-amino-2-trifluoromethylphenoxy)phenyl]cyclohexane (II), was prepared through the nucleophilic substitution reaction of 1,1-bis(4-hydroxyphenyl)cyclohexane and 2-chloro-5-nitrobenzotrifluoride in the presence of potassium carbonate, to yield the intermediate dinitro compound I, followed by catalytic reduction with hydrazine and Pd/C to afford the diamine II. Fluorinated polyimides (IVa-g) were prepared from the II with various aromatic dianhydrides via thermal or chemical imidization of poly(amic acid). These polyimides had inherent viscosity ranging from 0.72 to 1.16 dl/g and showed excellent solubility in a variety of organic solvents. They were soluble in a concentration of 10% in the amide polar solvent, and 1-5% in the other testing solvents. IV films showed good mechanical properties, excellent thermal stability. The 10% weight loss temperature was above 476 °C in nitrogen or air, and the glass transition temperature was recorded at 214-278 °C. In comparison of the IV series with the analogous nonfluorinated polyimides (V series) based on 1,1-bis[4-(4-aminophenoxy)phenyl]cyclohexane (II′), IV series revealed better solubility, lighter-colored and lower dielectric constants and moisture absorptions. Their films had cut-off wavelengths in the range of 364-414 nm, b* value (a yellowness index) ranging from 3.3 to 66.3, dielectric constants of 3.02-3.55 (1 MHz), with moisture absorption of 0.16-0.36 wt%.  相似文献   

5.
Tao Liu  Bao-Hui Xia 《Polymer》2008,49(8):2077-2084
Geometries, ionization potentials (IPs), electron affinities (EAs) and optical properties of two series of π-conjugated oligomers (2,6-(4,4-bis(2-ethylthexyl)-4H-cyclopenta-[def]-phenanthrene))nCPPn (2,6-(4,4-bis(2-ethylthexyl)-8,9-dihydro-4H-cyclopenta-[def]-phenanthrene))nHCPPn (n = 1-4) were studied theoretically. The ground and the excited state geometries were optimized by B3LYP and CIS methods with 6-31G basis sets, respectively. The absorption and the emission spectra were calculated by TD-B3LYP method. The lowest-lying absorption is assigned to π → π transition, and the fluorescence can be described as originating from the 1[ππ] excited state. IPs, EAs, H-L gaps, absorption and emission properties of PCPP (n = ∞) and PHCPP (n = ∞) were obtained by extrapolation method. The fact that the lowest-lying absorption and the emission of PCPP are blue-shifted compared with those of PHCPP, can be interpreted by the smaller effective repeating units of PCPP. The extra absorption band at 289 nm of PCPP is contributed by the π → π transition involving the extra π-conjugation CC bond.  相似文献   

6.
Chin-Ping Yang  Yu-Yang Su 《Polymer》2005,46(15):5778-5788
A series of polyimides IIIa-h characterized by colorlessness, high transparency, high solubility, and good mechanical property, was synthesized from the aromatic dianhydride, 2,5-bis(3,4-dicarboxyphenoxy)-t-butylbenzene dianhydride (I), and various aromatic diamines (IIa-h) with pendent trifluoromethyl group via polyaddition, chemical imidization, and direct cast films. The III series showed more colorless than the polyimides (V and VI series) of 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (6FDA) contained, the VI series was synthesized from the II with 6FDA. These films III had cut-off wavelengths between 371 and 376 nm, as well as b* value (a yellowness index) ranging from 3.0 to 4.7. In fact, it is so far the most colorless aromatic polyimide in our systematical researches. The III series had inherent viscosity ranging from 0.72 to 1.33 dL/g and showed excellent solubility in a variety of organic solvents. They were soluble in a concentration of 5-10% in the amide polar solvent, ether solvent, and chlorinated solvent. These films showed strength tensile of 97-123 MPa, dielectric constants of 2.78-3.28 (1 MHz), and moisture absorptions of 0.11-0.36 wt%. The glass transition temperature of the III series was recorded at 214-259 °C, the 10% weight loss temperature was over 468 °C, and the residue was more than 47% at 800 °C in nitrogen.  相似文献   

7.
Aromatic diamine-based benzoxazines and their high performance thermosets   总被引:1,自引:0,他引:1  
Four high-purity aromatic diamine-based benzoxazines (13-16), which could not easily be synthesized by traditional approaches, were successfully synthesized by a facile, widely useful three-step synthetic method using four typical aromatic diamines - 4,4′-diamino diphenyl methane (1), 4,4′-diamino diphenyl sulfone (2), 2,2-bis(4-(4-aminophenoxy)phenyl)propane (3), and bis(4-(4-aminophenoxy)phenyl)ether (4), respectively, as starting materials. The structures of the monomers (5-16) were confirmed by 1H, 13C, 1H-1H and 1H-13C NMR spectra. Their high performance thermosets, P(13-16), were obtained by thermal curing of benzoxazines (13-16), and their properties were studied and compared with polymer derived from bis(3,4-dihydro-2H-3-phenyl-1,3-benzoxazinyl)methane (F-a), a typical aromatic biphenol-based benzoxazine. Among the benzoxazines, 13 and F-a are constitutional isomers, but the Tg value and 5% decomposition temperature of P(13) are 53 and 111 °C, respectively, higher than those of P(F-a), demonstrating the power of the molecule-approach to enhance the thermal properties. Because of the large varieties of aromatic diamines, this approach can increase the molecule-design flexibility of benzoxazines.  相似文献   

8.
The electrochemical properties of a series of cyclic arylboronic esters, XC6H4B(OR)2 [RR = CH2CH2; X = H (1a); p-Me (1b); p-OMe (1c); p-Cl (1d); p-Ph (1e); m-Cl (1f); m-OMe (1g); CF3 (1h); OMe (1i); 2,6-dimethyl (1j); 1b with RR = (CH2)3, (1k); 1b with RR = CMe2CMe2, (1m)] has been studied in acetonitrile by cyclic voltammetry (CV) and controlled-potential electrolysis (CPE). The CV of representative examples of aryl borates with different substituents show one irreversible oxidation wave on a Pt cathode, at 1.8-1.9 V (vs. Ag/AgCl), with a negligible substituent effect. The cathodic CPE process led to small amounts of biaryls only, whereas the direct anodic CPE could not be carried out practically due to low currents. However, in the presence of electrogenerated bromonium (or iodonium) ions a C-B bond cleavage does take place to yield the corresponding bromoaryls, brominated phenols, and arylboronic acids as the major products.  相似文献   

9.
C.P Yang  Y.Y Su 《Polymer》2003,44(20):6311-6322
A colorless fluorinated diamine, 3′-trifluoromethyl-3,4′-oxydianiline (3′-CF3-3,4′-ODA) (II) was prepared through the nucleophilic substitution reaction of 3-nitrophenol and 2-chloro-5-nitrobenzotrifluoride by catalytic reduction with hydrazine and Pd/C. A series of Polyimides V were synthesized from the diamine II with various aromatic dianhydrides IIIa-f via thermal and chemical imidization. These polyimides had inherent viscosities ranging from 0.88 to 1.12 dl/g. A comparison of V, VI to analogous polyimides VII, VIII. VI, VII and VIII was based on 3′4-ODA, 3-CF3-4,4′-ODA, 4,4′-ODA, respectively. In terms of the color of PI revealed that the color intensity of phenoxy-containing amine of the meta-structure and the para-structure with the CF3 group would fell off color intensity. The color intensity of the four polyimide series was lessened in the following order: V>VII>VI>VIII. The solubility of V is better than VI, VII and VII. The polyimide V films had a tensile strength ranging from 124 to 147 MPa, elongation at break from 9 to 65%, and initial modulus from 2.3 to 2.8 GPa. The glass transition temperature of polymers was recorded at 234-313 °C. They had 10% weight loss at a temperature above 515 °C and left more than 50% residue even at 800 °C in nitrogen. Compared with polyimides VI, V showed the lower dielectric constants of 2.80-3.50 (40 MHz), and moisture absorptions in the range of 0.44-1.02 wt%.  相似文献   

10.
A series of high molecular weight, sulfonated polyimide copolymers (8a-f) with controlled acid contents have been obtained using 2,2′-bis(4-sulfobenzyloxy)benzidine (14) prepared via a flexible synthetic route. This series of novel sulfonated polyimide membranes were found to possess higher hydrolytic stability than polyimides in which the sulfonic acid groups are bound directly to the polymer main chain. An in-depth analysis of conductivity data was also performed for 8 and compared to the results for Nafion® (1), sulfonated poly(ether ether ketone) (2) and a main-chain sulfonated polyimide (3). In order to remove the influence of acid strength, the proton mobility value for 8 at infinite dilution was calculated and found to be 1.2(±0.6) × 10−3 cm2 s−1 V−1. A catalyst-coated membrane (CCM)-MEA based on a polyimide incorporating 60% sulfonated monomer (8d) was found to exhibit comparable beginning-of-life fuel cell performance as a Nafion®-based CCM MEA at 50 °C.  相似文献   

11.
The electrochemical study of N-tert-butoxy-2,4-diphenyl-6-tert-butylphenylaminyl (1a), N-tert-butoxy-2,4-bis(4-chlorophenyl)-6-tert-butylphenylaminyl (1b), N-[2-(methoxycarbonyl)-2-propyl]-2,4-diphenyl-6-tert-butylphenylaminyl (2), and N-tert-butoxy-2,4,6-tris(4-chlorophenyl)phenylaminyl radicals (3) was performed by cyclic voltammetry using acetonitrile as the solvent and Bu4NPF6 as the supporting electrolyte. On cathodic scan (100 mV/s), all the radicals gave chemically reversible cyclic voltammograms, and the were determined to be −1.405 V (1a), −1.310 V (2a), −1.282 V (2b), and −1.195 V (3) (versus Fc+/Fc), respectively. On anodic scan (100 mV/s), on the other hand, 1a, 1b and 2 showed chemically reversible cyclic voltammograms, but 3 exhibited a partially reversible couple even on a scan rate of 500 mV/s, indicating that the cation species of 3 was less stable. The determined for 1a, 1b, 2 and 3 were 0.220, 0.280, 0.318 and 0.294 V (versus Fc+/Fc), respectively. The electrochemical data were compared with those of thioaminyl radicals, the corresponding sulfur analogues of 1-3.  相似文献   

12.
Long-Hua Lee  Wen-Chang Chen 《Polymer》2005,46(7):2163-2174
Hybrid materials based on a new polyhedral oligomeric silsesquioxane, octa(2,3-epoxypropyl)silsesquioxane (OE) with diamines of 4,4′-methylenedianiline (DDM) and 5-trifluoromethyl-1,3-phenylenediamine (FPA) were prepared and characterized. OE was synthesized from cage-structured octaallylsilsesquioxane (OA) with m-chloroperbenzoicacid. The FTIR studies suggested that the N-H bond in diamines was not completely reacted with epoxy group due to steric hindrance and also extensive hydrogen bonding existed in the hybrid materials. The retention of the cage structure in the prepared hybrid materials was suggested by the FTIR and 29Si NMR studies. The OE/FPA hybrid materials had superior thermal/mechanical characteristics than the OE/DDM due to the higher rigidity of the FPA than that of DDM or the silicon-fluorine interaction enhancing crosslinking reaction or hydrogen bonding. The prepared OE/FPA had a Tg of 170 °C, which was higher than diglycidyl ether of bisphenyl A (DGEBA)/DDM at the same stoichiometric ratio. It also had excellent thermal, mechanical, and dielectric characteristics with high storage modulus of 1.8 GPa (30 °C) and 0.3 GPa (250 °C), low coefficient of thermal expansion of 86 μm/m °C, and dielectric constant of 2.19. Thus, it can be high performance materials with potential applications for electronic packaging.  相似文献   

13.
The synthesis and characterization of a linear silarylene-siloxane-diacetylene polymer 1 and its conversion to a highly cross-linked thermoset 4 are discussed. The linear polymer was prepared via polycondensation of 1,4-bis(dimethylaminodimethylsilyl)butadiyne, [(CH3)2N-Si(CH3)2-CC-CC-(CH3)2SiN(CH3)2], 2 with 1,4-bis(hydroxydimethylsilyl)benzene 3. Conversion to a thermoset 4 occurs through the diacetylene groups above 300 °C. The thermoset was observed to exhibit long-term thermo-oxidative stability up to 350 °C in air as determined by thermogravimetric analysis.  相似文献   

14.
The polymerization of 1-β-naphthyl-2-[(p-trimethylsilyl)phenyl]acetylene (8a) with TaCl5-n-Bu4Sn in cyclohexane provided a high molecular weight polymer (9a) (Mw=3.4×106). The corresponding monomers having p-dimethyl-t-butylsilyl and p-dimethyl(10-pinanyl)silyl groups in place of p-trimethylsilyl group in 8a also polymerized in a similar way to give high molecular weight polymers (9b, 9c, respectively; Mw>1×106). All these polymers were soluble in many common solvents such as toluene and chloroform, and provided free-standing membranes by casting from toluene solution. The oxygen permeability coefficients (PO2) of 9a at 25 °C was as high as 3500 barrers. The membrane of poly(1-β-naphthyl-2-phenylacetylene) (10a) was prepared by desilylation of the membrane of 9a with trifluoroacetic acid. Polymer 10a was insoluble in any solvents, and showed high thermal stability (the onset temperature of weight loss in air ∼470 °C). The PO2 value of 10a reached 4300 barrers. Not only the membrane of 9c but also its desilylation product 10c exhibited large optical rotations ([α]D=+2924 and +9800°, respectively) and strong CD signals. This indicates that the membrane of 10c maintains the helical main chain conformation of 9c with a large excess one-handed helix sense.  相似文献   

15.
Toru Katsumata 《Polymer》2008,49(12):2808-2816
The polymerization of diphenylacetylene derivatives possessing tert-amine moieties, such as triphenylamine, N-substituted carbazole and indole, was examined in the presence of TaCl5-n-Bu4Sn (1:2) catalyst. A polymer with high molecular weight (Mw = 570 × 103) was obtained in good yield by the polymerization of diphenylamine-containing monomer 1b, whereas the isopropylphenylamine derivative (1c) gave a polymer with relatively low molecular weight (Mw = 2.4 × 103). The polymerization of monomer 1d containing cyclohexylphenylamine group did not proceed; however, carbazolyl- and indolyl-containing monomers also produced polymers. Poly(1b), poly(2f) and poly(4b) could be fabricated into free-standing membranes by casting toluene solutions of these polymers. The gas permeability of poly(1b) was too low to be evaluated accurately whereas poly(4b) possessing two chlorine atoms in the repeating unit showed higher gas permeability than that of poly(1b); furthermore, poly(2f) having trimethylsilyl and 3-methylindolyl groups exhibited relatively high gas permeability (). In the cyclic voltammograms of diphenylamino group-containing polymers, poly(1b) and poly(2b), the intensities of oxidation and reduction peaks decreased more than those of carbazolyl-containing poly(2a). The molar absorptivity (?) of poly(1b) at ∼700 nm increased with increasing applied voltage in the UV-vis spectrum.  相似文献   

16.
Decheng Wan  Feng Chen  Toshifumi Satoh 《Polymer》2011,52(15):3405-3412
The guest release and solution behavior during shell disruption of a polymeric nanocapsule are described. Hyperbranched polyethylenimine (PEI, Mn = 10?000) is chemically functionalized with multiple DAD hydrogen-bonding motifs (D and A: hydrogen-bonding donor and acceptor), leading to PEI232-(DAD)x (3) (x = 93 (3a), x = 46 (3b), x = 23 (3c), x = 12 (3d)). Meanwhile, polyethylene oxide (Mn = 2 200) is end-capped with thymine moieties (PEO-ADA) (4). Mixing of the hydrogen-bonding complementary 3 and 4 (DAD/ADA = 1) leads to a physical micelle (3·4) in apolar media, and the resulting micelle can completely and irreversibly transfer the ionic and water-soluble Congo red (CR) into chloroform phase by encapsulation. Experiment proves that the micelle can exist as a pseudo-unimolecular micelle (p-UIM, meaning one PEI in one micelle) or as aggregate, depending on the shell density. As a result, 3b·4 generally exists as a p-UIM while 3d·4 can exist as p-UIM only in a very narrow range of concentrations. The critical aggregation concentration (CAC) is also dependent on the core structure of the micelle, thus when the residual amines in the core of 3b are transformed into amide, the resulting 5b·4 shows a very low CAC. Small chemicals bearing DAD hydrogen-bonding motif can compete to bind with the PEO-ADA shell and destruct the p-UIM, leading to aggregation and precipitation of the p-UIM along with the CRs. Experiment proves that the CR has strong acid-base interaction with the PEI core of the p-UIM, but when the basicity of the PEI core is reduced by amidation, partial CRs can be released into the water phase.  相似文献   

17.
TEMPO-containing 7-oxanorbornene monomers 1-4 (TEMPO = 2,2,6,6-tetramethylpiperidine-1-oxy) were synthesized and polymerized via ring-opening metathesis using a ruthenium carbene catalyst. Monomers 1 and 3 gave polymers with number-average weights of 80?100 and 112?200 in 85 and 96% yields, respectively, whereas monomers 2 and 4 did not provide high molecular weight polymers. Poly(1) and poly(3) were soluble in common solvents including CHCl3, CH2Cl2 and THF, while insoluble in hexane, diethyl ether and MeOH. They were thermally stable up to ca. 240 °C according to the TGA measurements in air. The secondary batteries utilizing the present polymers as cathode-active material demonstrated reversible charge/discharge processes, whose discharge capacities were 107 and 92.8 A h/kg, and displayed excellent high-rate charge and discharge properties. These cells demonstrated excellent cycle life, e.g., the discharge capacities of poly(1) and poly(3) showed less than 10% decrements even after 100 cycles.  相似文献   

18.
4-Vinylbenzyl glucoside peracetate 1 was polymerized with α,α′-bis(2′,2′,6′,6′-tetramethyl-1′-piperidinyloxy)-1,4-diethylbenzene 2 in chlorobenzene using (1S)-(+)-10-camphorsulfonic acid anhydrous (CSA) as an accelerator ([1]=0.4 M,[1]/[2]/[CSA]=75/1/1.3) at 125 °C for 5 h. The polymerization afforded poly(4-vinylbenzyl glucoside peracetate) having TEMPO moieties on both sides of the chain ends, 3, with a molecular weight (Mw,SLS) of 8500, a polydispersity index (Mw/Mn) of 1.09, and an average degree of polymerization of the 1 unit (x) of 17. Styrene (St) was polymerized with 3 in chlorobenzene at 125 °C (St/chlorobenzene=1/2, w/w). The polymerization successfully afforded polystyrene-poly(4-vinyl glucoside peracetate)-polystyrene, 4, when the polymerization time was below about 2 h. Polymer 4 with the Mw,SLS of 12,500, 17,900, and 29,400, the compositions (y-x-y) of 20-17-20, 45-17-45, and 100-17-100, and the Mw/Mn of 1.12, 1.14 and 1.17 were modified by deacetylation using sodium methoxide in dry-THF into polystyrene-poly(4-vinyl glucoside peracetate)-polystyrene, 5. The solubility of polymer 5 was examined using a good solvent for polystyrene such as toluene and for the saccharide such as H2O.  相似文献   

19.
New electroluminescent polymers with various phenyl groups, poly[2-dimethyl(octyl)silyl-5-(4-(dimethyl(octyl)silyl)phenyl)-1,4-phenylenevinylene] (P1), poly[2,5-bis(4-(dimethyl(octyl)silyl)phenyl)-1,4-phenylenevinylene] (P2), poly[2,5-bis(9,9-dihexylfluorenyl)-1,4-phenylenevinylene] (P3), and poly[2,5-bis(4-(4-(2-etylhexyloxy)phenyl)phenyl)-1,4-phenylenevinylene] (P4), have been synthesized by the Gilch polymerization. The maximum absorption peaks of P1-P4 appeared at 388-423 nm in THF solution, and are red-shifted to 404-425 nm in solid thin film. The photoluminescence (PL) emission spectra of P1-P4 show a maximum peak at 482-503 nm in THF solution and at 521-549 nm as the solid film state. The emission spectra in the solid film state are more red-shifted over 40 nm, and the full width at half maximum (fwhm) was 30 nm greater than the solution conditions. The polymer light-emitting diodes (PLEDs) with the configuration of ITO/PEDOT/polymer/Al emitted light with maximum peaks at around 517-546 nm. The various phenyl substituents, with intermolecular interactions in the solid film state, can introduce the color tuning and device performance enhancement of the conjugated polymer as an emissive layer in PLED.  相似文献   

20.
Novel polysiloxane derivative having adamantyl moiety in the main chain (P1) was synthesized and characterized by differential scanning calorimetry (DSC), thermogravimetry (TG), and X-ray diffraction analysis. P1 was obtained by bulk polycondensation without catalysts as well as solution polycondensation of novel disilanol monomer, i.e., 1,3-bis[4-(dimethylhydroxysilyl)phenyl]adamantane (M1), which was prepared by the Grignard reaction using chlorodimethylsilane and 1,3-bis(4-bromophenyl)adamantane, followed by the hydrolysis catalyzed by 5% palladium on charcoal. The molecular weight of P1 was dependent on the concentration of M1 in solution polycondensation, and the high concentration of M1 would result in the high average molecular weight of P1. P1 exhibited the good solubility in common organic solvents, such as tetrahydrofuran (THF), chloroform, dichloromethane, and toluene. The glass transition temperature (Tg) of P1 determined from DSC would be dependent on the average molecular weight of P1. The highest Tg was 115 °C and much higher than that of poly(tetramethyl-1,4-silphenylenesiloxane) (−20 °C). The melting temperature (Tm) of P1 seemed to be independent of the average molecular weight of P1 and was in the range of 153-157 °C, which was comparable to the Tm of poly(tetramethyl-1,4-silphenylenesiloxane). The temperature at 5% weight loss (Td5) of P1 determined by TG was also comparable to that of poly(tetramethyl-1,4-silphenylenesiloxane), indicating that P1 is a new polysiloxane derivative with the high Tg as well as good thermostability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号