首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This article solves the leaderless consensus problem of a class of uncertain nonlinear multiagent systems with unknown control directions and unknown system parameters. Without using the Nussbaum function approach, a novel control scheme is proposed by means of the switching mechanism. The control algorithm guarantees that consensus errors converge to the origin asymptotically, and the amplitude of the control signals is much smaller compared with those using Nussbaum functions. The simulation results illustrate the effectiveness of the proposed algorithm.  相似文献   

2.
In this paper, a bipartite consensus problem is considered for a high‐order multiagent system with cooperative‐competitive interactions and unknown time‐varying disturbances. A signed graph is used to describe the interaction network associated with the multiagent system. The unknown disturbances are expressed by linearly parameterized models, and distributed adaptive laws are designed to estimate the unknown parameters in the models. For the case that there is no exogenous reference system, a fully distributed adaptive control law is proposed to ensure that all the agents reach a bipartite consensus. For the other case that there exists an exogenous reference system, another fully distributed adaptive control law is also developed to ensure that all the agents achieve bipartite consensus on the state of the exogenous system. The stability of the closed‐loop multiagent systems with the 2 proposed adaptive control laws are analyzed under an assumption that the interaction network is structurally balanced. Moreover, the convergence of the parameter estimation errors is guaranteed with a persistent excitation condition. Finally, simulation examples are provided to demonstrate the effectiveness of the proposed adaptive bipartite consensus control laws for the concerned multiagent system.  相似文献   

3.
This paper deals with the distributed robust stabilization problem for networked multiagent systems with strict negative imaginary (SNI) uncertainties. Communication among agents in the network is modelled by an undirected graph with at least one self‐loop. A protocol based on relative state measurements of neighbouring agents and absolute state measurements of a subset of agents is considered. This paper shows how to design the protocol parameters such that the uncertain closed‐loop networked multiagent system is robustly stable against any SNI uncertainty within a certain set for various different network topologies. Tools from negative imaginary (NI) theory are used as an aid to simplify the problem and synthesise the protocol parameters. We show that a state, input, and output transformation preserves the NI property of the network. Consequently, a necessary and sufficient condition for the transfer function matrix of the nominal closed‐loop networked system to be NI and satisfy a DC gain condition is that multiple reduced‐order equivalent systems be NI and satisfy a DC gain condition simultaneously. Based on the reduced‐order systems, we derive sufficient conditions in an LMI framework which ensure the existence of a protocol satisfying the desired objectives. A numerical example is given to confirm the effectivenesses of the proposed results.  相似文献   

4.
In this paper, the adaptive tracking control problem is investigated for the multiagent systems with event-triggered (ET) communication and asymmetric input saturation. By adopting an auxiliary system, the problem of asymmetric input saturation is successfully handled. Two ET mechanisms are employed in the controller-to-actuator channel and communication channel respectively to economize the limited communication resources. The update frequency of the controller can be reduced by devising a novel switching ET mechanism, which can unify the three existing ET schemes. Based on a backstepping technique, a distributed ET controller is devised, which only requires the sampled value of neighboring states. Due to the discontinuity of the ET state signals, the repetitive differentiation of virtual control laws will not be computed. To solve this problem, the predesigned differentiable partial derivatives of virtual control laws are used to construct the ET virtual control laws. By applying the Lyapunov stability method, it is proved that the desired tracking performance and the stability of the closed-loop system can be guaranteed. Finally, a simulation example demonstrates that the proposed control strategy is effective.  相似文献   

5.
This paper presents a novel distributed adaptive control algorithm for uncertain higher‐order nonlinear multiagent systems subject to output constraints and unknown control directions. Regarding the latter, a generic class of cases is considered, allowing completely unknown and even nonidentical control directions. Furthermore, the communication topology is only required to contain a fixed directed spanning tree. To guarantee the output constraints and address the asymmetric directed communication topology, a new reference output using the transformation strategy is introduced for each agent, benefiting from which the consensus problem of the multiagent system is recast as local tracking control problems of single agents. Then, the distributed control algorithm is recursively established based on the backstepping technique and the Nussbaum‐type function. By leveraging the unique properties of the Laplacian matrix on directed graphs and matrix theory, it is shown that, under the proposed distributed algorithm, uniform boundedness of all closed‐loop signals can be ensured, and asymptotic consensus is achieved without violation of the output constraints. Finally, simulation studies on the angle control of single‐link robots are given to verify the effectiveness of the proposed algorithm.  相似文献   

6.
This paper is concerned with the time‐varying formation control problem for singular multiagent systems with switching topologies. First, in order to eliminate the pulse solution of singular systems and extend the formation function set, the distributed formation controller has been formulated based on the output information of the agents. Then, the explicit expression of formation position function is presented based on the impulse free and the equivalent transformation of singular multiagent systems. Next, the sufficient and necessary conditions of the feasibility of the formation function are provided. Moreover, the sufficient conditions of formation control of singular multiagent systems with switching topologies are presented and the algorithm is designed to solve the distributed controller. Finally, the validity of the proposed approaches is verified by numerical simulation in this paper.  相似文献   

7.
提出了一种能够解决高阶异构集群系统输出时变编队跟踪问题的控制方法. 集群系统中的智能体分为领导者和跟随者, 领导者和跟随者的动力学模型可以完全不同. 跟随者的输出在跟踪领导者输出的同时保持时变编队实现协同运动. 考虑了领导者存在已知或未知控制输入、领导者和跟随者均存在未知扰动、有向通信拓扑存在切换等多种因素并存的情况, 结合观测器理论、自适应控制理论和滑模控制理论设计了完全分布式的输出时变编队跟踪控制协议, 摆脱了对领导者控制输入上界值、与通信拓扑相关的拉普拉斯矩阵的特征值以及时变编队函数等全局信息的依赖. 利用Lyapunov理论证明了在有向拓扑切换条件下异构集群系统的闭环稳定性. 最后通过数值仿真对理论结果的有效性进行了验证.  相似文献   

8.
This paper addresses the adaptive synchronization control problem of networked robot systems characterized by the Lagrangian function, where exact dynamic models are unknown and velocity measurements are unavailable. A class of distributed observers, comprised of multiple dynamic variables and static variables, are established based on no a priori restriction on the boundness of the observer states. The observer is compatible for different control schemes with or without structure uncertainties. Using the estimated states given by the observer, adaptive distributed control input is developed, and then, closed‐loop dynamic models for filtered vectors are established. It is proven that our proposed control scheme permits global exact state estimation and global asymptotic synchronization while compensating for structure uncertainties. Simulations are provided to demonstrate the effectiveness of the results.  相似文献   

9.
This paper discusses the consensus problem of second‐order multiagent systems with nonlinear dynamics. A directed spanning tree–based adaptive control protocol is developed, which overcomes the drawback that the spectrum of the Laplacian matrix must be known a priori. A scheme for reordering the nodes is proposed. Applying the developed method and the Lyapunov stability theory, some distributed adaptive laws are designed in the directed network. It is found that the consensus can be achieved by randomly choosing a directed spanning tree and using the developed distributed adaptive law. Finally, an example is presented to illustrate the theoretical analysis.  相似文献   

10.
This paper considers the leader‐follower consensus tracking problem for nonlinear multiagent systems with external disturbances and switching topologies. A distributed disturbance observer is constructed to estimate the disturbances suffered by the followers. Then, a distributed consensus protocol is proposed for the consensus tracking problem with disturbance rejection under a fixed directed topology based on the disturbance observer. Next, this result is extended to the case in which the switching communication topology only frequently but not always contains a directed spanning tree. By selecting the parameters appropriately such that the communication time satisfies various preset conditions, it is theoretically proven that the consensus tracking with disturbance rejection can also be achieved by the multiagent systems. Finally, a simulation example is presented to demonstrate the performance of the proposed control scheme.  相似文献   

11.
In this paper, the problem of distributed containment control for pure‐feedback nonlinear multiagent systems under a directed graph topology is investigated. The dynamics of each agent are molded by high‐order nonaffine pure‐feedback form. Neural networks are employed to identify unknown nonlinear functions, and dynamic surface control technique is used to avoid the problem of explosion of complexity inherent in backstepping design procedure. The Frobenius norm of the ideal neural network weighting matrices is estimated, which is helpful to reduce the number of the adaptive tuning law and alleviate the networked communication burden. The proposed distributed containment controllers guarantee that all signals in the closed‐loop systems are cooperatively semiglobally uniformly ultimately bounded, and the outputs of followers are driven into a convex hull spanned by the multiple dynamic leaders. Finally, the effectiveness of the developed method is demonstrated by simulation examples.  相似文献   

12.
为实现多智能体网络系统的协调控制,设计了一种新型的带有自适应协调器的控制器.基于动态图建立了多智能体网络系统的模型,并考虑了系统的非线性互联和不可避免存在的时变时滞.应用分布式控制策略,设计了自适应参数估计的协调器,用于调节智能体之间的互联强度,使网络达到稳定的预设水平.并基于Lyapunov-Kra-sovskii泛函和自适应动态偏差反馈控制技术,根据拉萨尔不变集原理证明了偏差控制系统的渐近收敛性.这种控制方法,可在系统参数不确定的情况下,同时完成参数估计和协调控制.所设计的控制律和自适应律简单,易于实现,仿真示例验证了所提方法的有效性.  相似文献   

13.
The containment control of stochastic multiagent systems with semi‐Markov switching topologies is investigated in this paper. The general case that the distribution function of the sojourn time is dependent on both the current system mode and the target mode is considered. Taking state multiplicative noise into account and using stochastic techniques, sufficient conditions to achieve the containment control in the asymptotic mean square sense are obtained in a form of linear matrix inequalities and the controller design condition is given. Finally, a simulation is given to demonstrate the effectiveness of the obtained theoretical results.  相似文献   

14.
This paper investigates the consensus problem for high‐order multiagent systems with unknown control directions and directed communication constraints. To handle the problem of unknown control directions, a logic switching rule is established in the framework of fixed‐time stability. Then, the consensus is achieved in two steps. A group of distributed fixed‐time observers is designed to estimate the reference signals first. Based on these estimates and the designed logic switching rule, a novel control protocol is proposed for each follower system. Different from the existing results, the consensus is achieved with a fixed‐time convergence rate, and the unknown control directions are allowed to be nonidentical for each agent. Finally, simulation results are given to exhibit the validity of the proposed method.  相似文献   

15.
In this study, we consider the problem of distributed H containment control for multiagent systems over switching communication topologies. There exists a constant time‐delay and the energy‐bounded communication disturbances in the information transmission process, which are considered. Using the relative output, we develop an observer‐based containment control scheme such that the followers asymptotically converge to the convex hull formed by the leaders with a guaranteed H performance level. By constructing a Lyapunov functional and using the inequality technique, sufficient conditions for the existence of such dynamic controllers are obtained in terms of linear matrix inequalities. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed control protocol.  相似文献   

16.
This paper extends the result for cooperative output regulation problem for uncertain nonlinear multiagent systems in output feedback form in the sense that the exosystem generating leader's signal and disturbance is allowed to contain unknown parameter, and all parameters in the whole multiagent system can be arbitrarily large. Since only the information of itself and its neighbors is available, constructing a distributed control law is necessary for the asymptotic tracking of the uncertain leader's signal and the rejection of unknown external disturbances, which is also the main challenge here. A series of simulations are conducted to illustrate the efficiency and advantage of our designs together with the comparison of the design in the existing work.  相似文献   

17.
In this paper, we develop a new integrated coordinated control and obstacle avoidance approach for a general class of underactuated agents. We use graph-theoretic notions to characterise communication topology in the network of underactuated agents as determined by the information flow directions and captured by the graph Laplacian matrix. Obstacle avoidance is achieved by surrounding the stationary as well as moving obstacles by elliptical or other convex shapes that serve as stable periodic solutions to planar systems of ordinary differential equations and using transient trajectories of those systems to navigate the agents around the obstacles. Decentralised controllers for individual agents are designed using sliding mode control approach and are only based on data communicated from the neighbouring agents. We demonstrate the efficacy of our theoretical approach using an example of a system of wheeled mobile robots that reach and maintain a desired formation. Finally, we validate our results experimentally.  相似文献   

18.
Error encoding algorithms for networked control systems   总被引:1,自引:0,他引:1  
A networked control system is characterized by having a feedback loop closed through a local area network. This paper considers methods for scheduling the use of the network to guarantee both stability and controller performance. We propose and validate algorithms for choosing message identifiers for dynamically scheduled networked control systems. Two schemes for selecting priority levels are proposed: a fixed arbitrary grid and an auto-scaling grid. We prove that the system is uniformly ultimately bounded in the case of the fixed encoding scheme, and asymptotically stable with auto-scaling. An inverted pendulum is used to illustrate the encoding methods.  相似文献   

19.
In this work, a consensus problem with nonconvex control input and velocity constraints is studied for continuous‐time multiagent systems. In order to solve this problem, a fully distributed nonlinear algorithm is provided and an analysis approach is proposed based on the contraction property of an equivalent time‐varying system after a model transformation. It is shown that consensus can be achieved under the condition that there exists a directed spanning tree in the union of the communication graphs in each certain time interval. A numerical simulation is provided to show the obtained result.  相似文献   

20.
This paper considers the problem of control of networked systems via output feedback. The controller consists of two parts: a state observer that estimates plant state from the output when it is available via the communication network, and a model of the plant that is used to generate a control signal when the plant output is not available from the network. Necessary and sufficient conditions for the exponential stability of the closed loop system are derived in terms of the networked dwell time and the system parameters. The results suggest simple procedures for designing the output feedback controller proposed. Numerical simulations show the feasibility and efficiency of the proposed methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号