首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermal shock characteristics of plasma sprayed mullite coatings   总被引:2,自引:0,他引:2  
Commercially available mullite (3Al2O3·2SiO2) powders containing oxides of calcium and iron as impurities, have been made suitable for plasma spraying by using an organic binder. Stainless steel substrates covered with Ni-22Cr-10Al-1.0Y bond coat were spray coated with mullite. The 425 μm thick coatings were subjected to thermal shock cycling under burner rig conditions between 1000 and 1200 °C and less than 200 °C with holding times of 1, 5, and 30 min. While the coatings withstood as high as 1000 shock cycles without failure between 1000 and 200 °C, spallation occurred early at 120 cycles when shocked from 1200 °C. The coatings appeared to go through a process of self erosion at high temperatures resulting in loss of material. Also observed were changes attributable to melting of the silicate grains, which smooth down the surface. Oxidation of the bond coat did not appear to influence the failure. These observations were supported by detailed scanning electron microscopy and quantitative chemical composition analysis, differential thermal analysis, and surface roughness measurements.  相似文献   

2.
The corrosion behavior of a resin-sealed flame-sprayed titanium coating in 3.5% NaCl solution was investigated by electrochemical polarization measurements. The composition and structure of the sprayed film was also analyzed by scanning electron microscopy (SEM) and electron probe x-ray microanalysis (EPMA). Although an as-sprayed titanium coating exhibited no resistance to corrosion because of its porosity, the sprayed titanium sealed with epoxy or silicon resin showed an excellent resistivity with respect to chloride corrosion. Although almost half of the titanium changed to oxides, nitrides, and carbides through the wire flame spraying, the conversion of the metal to those compounds had little effect on decreasing the corrosion resistivity. The sprayed and sealed titanium coating obtained by conventional on-site thermal spraying is expected to be an economical material for chloride containing environments. Presented at United Thermal Spray Conference & Exposition ’97, 15–18 September 1997, Indianapolis, IN.  相似文献   

3.
几种金属基板上冷喷涂铜涂层的试验与模拟   总被引:3,自引:1,他引:3  
采用自主研制的冷喷涂设备在三种典型基板上进行喷涂试验,相同的工艺参数下,在铜和铝基板上得到良好的铜涂层,而在钢基板上则没有沉积.实验结果表明:涂层与基板界面、涂层内部颗粒界面结合良好,铜涂层组织致密,显微硬度高达150HV0.1;从涂层表面形貌扫描电镜(SEM)照片中可以观察到射流状的金属,说明颗粒发生了巨大变形,经计算知颗粒在碰撞中压缩率达69%;粉末和涂层的X射线衍射(XRD)结果表明铜粉末在冷喷涂过程中没有发生氧化.同时,数值模拟了铜颗粒与三种基板的碰撞过程,讨论了形成有效结合的判断准则,根据该准则,计算出铜颗粒在铜、铝、钢基板上的临界沉积速度分别为600m/s,500m/s,800m/s,从而解释了铜颗粒在三种基板上不同的沉积行为.  相似文献   

4.
Stainless steel/carbon nanotube (SS/CNT) composite coating was prepared by thermal spray from the feedstock powder synthesized by chemical vapor deposition at a synthesis temperature and time of 800 °C and 120 min under ethanol atmosphere. Microstructural investigation by TEM and SEM revealed that grown CNTs covering the surface of stainless steel particles were multi-walled type with an average diameter of about 44 nm. Microstructures of pure stainless steel and SS/CNT composite coatings similarly showed splat characteristic and lamellar structure. Incorporation of CNTs was clearly observed in the composite coating. Hardness of SS/CNT composite coating (480 ± 36 HV0.3) was higher than that of pure stainless steel coating (303 ± 33 HV0.3). Coefficient of friction of the SS/CNT coating was almost 3 times lower than that of stainless steel coating which resulted in reduction of sliding wear rate of nearly 2 times. This research thus demonstrated a new composite coating with better wear resistive performance compared to a coating deposited by commercially available stainless steel powder.  相似文献   

5.
Deposition effects of WC particle size on cold sprayed WC-Co coatings   总被引:2,自引:0,他引:2  
The WC particle size and its influence on the deposition of Co-based cermets are examined. Micron and nanostructured powders with similar Co content were employed. Varying the WC particle size influenced significantly the deposition efficiency of the coating process. Micrometer-structured WC-Co feedstocks did not permit coating build up when processed under comparable or elevated thermal spray parameters used for the nanostructured WC-Co feedstocks. In addition, micrometer-structured WC-Co coatings exhibited a conjoint erosion and deposition effect on the surface. Fine WC particles (< 1 μm) were observed near the substrate interface and larger WC particles (1-2 μm) in the vicinity of the coating surface. These observations indicate the existence of a critical WC particle size for deposition by the cold spray method and that the size criteria arises due to the formation and cohesion mechanisms within the coating layer.Nanostructured test specimens displayed (i) a dense microstructure with little presence of porosity, (ii) a crack free interface between the coating and substrate that indicated good adhesion, and (iii) no observable phase changes. The XRD patterns of each powder and their respective coatings did not have observable peak differences but the diffraction peak broadening of coatings indicated that there was grain refinement during the coating process. Furthermore, all nanostructured as-sprayed WC-Co coatings exhibited Vickers hardness values above HV1000. The nanostructured WC-Co coatings demonstrated adhesive strengths that exceeded the limits of the glue (60 MPa).  相似文献   

6.
Coatings of Ti 5Si3 on titanium have been prepared by means of decomposition of silane SiH4 on heated titanium ribbons. Oxidation of the coated titanium specimens was much slower than that of the noncoated ones. Gravimetric and morphological experiments allowed to propose a mechanism describing the oxidation process.  相似文献   

7.
There is a trend to design the turbine coating and the substrate as in integral, layered, engineering assembly. Under the harsh environment of the turbine engine, a failure in one component can quickly lead to failure in other components. Materials that are used in structural applications are prone to mechanical vibration, which, when not attenuated, will lead to fatigue of components and shortening of life cycle. Therefore, it is necessary to examine the thermal stability and dynamic mechanical properties of coatings under dynamic conditions. In addition to these noise reduction and vibration amplitude control motivated objectives, however, mechanical energy dissipation processes also find intrinsic applications in cases for which a thorough understanding of the mechanisms responsible for the damping response of the material is required. This article describes the damping behavior and mechanisms that exist in plasma sprayed NiCoCrAlY coatings.  相似文献   

8.
Solid particle erosion behavior of the HVOF deposited NiCr and Stellite-6, coatings on boiler tube steels was evaluated. The study was conducted, using an air jet erosion test rig at a velocity of 26 m/s and impingement angle of 30° and 90°, on uncoated as well as HVOF spray coated boiler tube steel (GrA1) at 250 °C. The coatings were harder as compared to substrate steel. Scanning electron microscopy (SEM) technique was used to analyse the eroded surface. Mass losses of the coatings were found marginally higher than the boiler tube steel.  相似文献   

9.
304 stainless steel coatings had been deposited on carbon-steel substrate by cold spray technique, vacuum annealing treatment was applied to the coatings with different temperatures, and the influence of annealing treatment on the microstructure and electrochemical behavior of the coatings in 3.5% NaCl were analyzed. The results indicated that, the cold sprayed coating was constituted by the flattened particles, and the interfaces were clearly observed between the deposited particles. It was also found that...  相似文献   

10.
The high velocity air fuel (HVAF) system is a high-velocity combustion process that uses compressed air and kerosene for combustion. Two WC-cermet powders were sprayed by the HVAF and the high-velocity oxyfuel (HVOF) processes, using an AeroSpray gun (Browning Thermal Systems Inc., Enfield, New Hampshire) and a CDS-100 gun (Sulzer Plasma Technik, Wohlen, Switzerland) respectively. Several techniques, including x-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy, were used to characterize the microstructures and phase distribution of the powders and coatings. In addition, mechanical properties such as hardness and wear resistance (pin-on-disk) were investigated. A substantial amount of W2C was found in the HVOF coatings, as well as a high concentration of tungsten in the binder phase, indicating that oxidation and dissolution processes change the composition and microstructure from powder to coating during spraying. This was in contrast to the HVAF coatings in which composition and microstructure were unchanged from that of the powder. Additionally, the wear resistance of the HVAF coatings was superior to that of the HVOF coatings.  相似文献   

11.
魏琪  李辉  李红  张林伟 《焊接学报》2011,32(12):51-54
对比研究了附加屏蔽气体的大气等离子喷涂和普通大气等离子喷涂对热障涂层组织结构和性能的影响.结果表明,附加屏蔽气体的大气等离子喷涂粘结层表面未熔或半熔粒子较少,涂层中氧化物夹杂和孔隙率降低,热障涂层在1080℃下具有更好的抗氧化性能.附加屏蔽气体的大气等离子喷涂的热障涂层具有更好的抗氧化性能的原因,在于外加保护气氛减轻了...  相似文献   

12.
The objective of the present work is to determine the influence of the heat treatment on the corrosion resistance of a Cr3C2-NiCr coating of 450 μm thickness, deposited by a vacuum plasma spray process (VPS) on a steel substrate. The post-heat treatment of the as-deposited coating was carried out in Ar at 400 °C and 800 °C, respectively. The coatings were characterized by means of an electron probe micro analyzer (EPMA) with wavelength dispersive X-ray spectrometers (WDS). It was found that no significant changes were produced as a consequence of the heat treatment carried out at 400 °C. Therefore, the corrosion experiments were conducted for the substrate, the as-deposited coating and the post-heat treated coating at 800 °C. Potentiodynamic polarization showed that the annealed coating at 800 °C has a better corrosion resistance than the as-deposited coating. The corrosion current density (Icorr) of this coating was approximately 3 and 4 times smaller than that corresponding to the as-deposited coating and steel substrate, respectively. This significant improvement of the corrosion behavior of the post-heat treated coating is mainly due to both the microstructural changes that take place in the coating and the diffusion of Ni into Fe at the coating-substrate interface, which ensures the presence of a metallurgical bond.  相似文献   

13.
Cold spray coating technology is a promising low temperature variant of thermal spray technology which can deposit pure, dense and thick coatings at a rapid rate. Unlike the other thermal spray coating techniques, cold spray is especially suitable for depositing coatings with high electrical and thermal conductivity as the integrity of the feedstock is maintained during the coating process. In the present study, the effect of process parameters and heat treatment on the properties of silver coatings has been investigated. An attempt has been made to correlate the powder particle velocity with the properties and microstructure of the coating. The effect of heat treatment temperature and atmosphere on the properties of the coatings, especially electrical conductivity, has been studied in detail in conjunction with a thorough analysis of the evolution of microstructure of the coatings.  相似文献   

14.
Stable operation of cobalt catalyzed thermal sprayed titanium anodes for cathodic protection (CP) of bridge reinforcing steel was maintained in accelerated tests for a period equivalent to 23 years service at Oregon Department of Transportation (Oregon DOT) bridge CP conditions with no evidence that operation would degrade with further aging. The cobalt catalyst dispersed into the concrete near the anodeconcrete interface with electrochemical aging to produce a more diffuse anode reaction zone. The titanium anode had a porous heterogeneous structure composed of α-titanium containing interstitial oxygen and nitrogen, and a fee phase thought to be Ti(O,N). Splat cooling rates were 10 to 150 K/s, and microstructures were produced by equilibrium processes at the splat solidification front. Nitrogen gas atomization during thermal spraying produced a coating with more uniform composition, less cracking, and lower resistivity than using air atomization.  相似文献   

15.
ABSTRACT

This work describes the influence of standoff distance (SoD), and gas temperature on the morphology and corrosion resistance of Al-10%Al2O3 coatings deposited by cold gas spray (CGS) on carbon steel. The results showed that the standoff distance had little effect on the thickness and microstructure of the coating. However, a 100 °C decrease of the spraying temperature reduced the coating thickness by 300?µm. The use of electrochemical analyses and SEM images showed that all the coatings studied were able to protect the substrate during at least 1300?h of immersion, due to the dense microstructure obtained by CGS.  相似文献   

16.
以钛铁、铁和石墨为主要原料,用反应火焰喷涂技术制备TiC/Fe复合涂层。在喷涂过程中,在氧乙炔火焰条件下引燃Fe-Ti-C体系的自蔓延高温合成(SHS)反应,研究该SHS反应的动力学。结果表明,适当增加铁和石墨,或减小反应组元的粒度,会显著降低体系的点火温度,可促进Fe-Ti-C反应体系在氧乙炔火焰中的点火进程。喷涂粉末粒度、氧乙炔火焰功率、喷涂距离以及喷涂粉末的原料配比均会影响Ti-C间的反应程度,从而影响Fe-Ti-C体系的反应动力学。  相似文献   

17.
Dense and thick pure aluminum coatings were deposited on AZ91D-T4 magnesium substrates using the cold spray process. Heat treatments of the as-sprayed samples were carried out at 400 °C using different holding times. The feedstock powder, substrate and coating microstructures were examined using optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) as well as Vickers microhardness analysis. The results demonstrate that aluminum coatings having dense and uniform microstructure can be deposited successfully using a relatively large feedstock powder. It has been identified that the intermetallics Al3Mg2 (γ phase) and Mg17Al12 (β phase) were formed at the coating/substrate interface during heat treatment. The growth rate of these intermetallics follows the parabolic law and the γ phase has a higher growth rate than the β phase. The thickness of the Mg17Al12 and Al3Mg2 intermetallic layers has reached 83 μm and 149 μm, respectively. This result is almost 45% higher than what has been reported in the literature so far. This is attributed to the fact that T4 instead of as cast Mg alloy was used as substrate. In the T4 state, the Al concentration in the Mg matrix is higher, and thus intermetallic growth is faster as less enrichment is required to reach the critical level for intermetallic formation in the substrate. The AZ91D-T4 magnesium substrate contains single α phase with fine clusters/GP-zones which is considered beneficial for the intermetallic formation as well as the intimate contact between the coating/substrate interface and the deformed particles within the coating.  相似文献   

18.
Due to their mechanical properties, WC-based cermet coatings are extensively used in wear-resistant applications. These coatings are usually produced using thermal spray processes. However, due to the nature and the environment of these spraying processes, the feedstock powder structure and properties suffer from decomposition, which subsequently degrade the performance of the coatings produced. The cold gas dynamic spraying process appears to be a promising alternative technique to preserve the properties of the feedstock powder during the coating preparation. Although the latter technique can minimize or eliminate the degradation of the sprayed material, the deposition of cermet using this technique is a difficult task. In this study, two types of cermet powders, the nanocrystalline (WC-15Co) and the conventional (WC-10Co4Cr) powders were deposited using the cold gas dynamic spraying and the pulsed gas dynamic spraying processes. The feedstock powders and coatings microstructures were investigated by OM, SEM and XRD, as well as their hardness. The results revealed the possibility of depositing cermet coatings onto aluminum substrates using both processes without any degradation of the carbide phase of the feedstock powder. The cold gas dynamic spraying process experienced difficulty in depositing and building up dense coatings without major defects. The pulsed gas dynamic process produced thick cermet (conventional and nanocrystalline) coatings with low porosity as long as the feedstock powder was preheated above 573 K.  相似文献   

19.
The basic objective is the development of multifunctional multimaterial protective coatings using cold spraying (CS) and computer controlled detonation spraying (CCDS).As far as CS is concerned, the separate injection of each powder into different zones of the carrier gas stream is applied. Cu-Al, Cu-SiC, Al-Al2O3, Cu-Al2O3, Al-SiC, Al-Ti and Ti-SiC coatings are successfully sprayed. As to CCDS, powders are sprayed with a recently developed apparatus that is characterized by a high-precision gas supply system and a fine-dosed twin powder feeding system. Computer control provides a flexible programmed readjustment of the detonation gases energy impact on powder thus allowing selecting the optimal for each component spraying parameters to form composite and multilayered coatings. Several powders are sprayed to obtain composite coatings, specifically, among others, WC-Co-Cr + Al2O3, Cu + Al2O3, and Al2O3 + ZrO2.  相似文献   

20.
苟国庆  陈辉  涂铭旌 《电焊机》2005,35(11):36-39
研究分析了等离子喷涂NiCr/Cr3C2、NiCrCoAlY涂层的微观组织结构,并对2种涂层进行了显微硬度及抗热震性能实验。结果表明:NiCr/Cr3C2涂层的硬度高于NiCrCoAlY涂层.而NiCrCoAlY涂层的抗热震性能优于NiCr/Cr3C2涂层。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号