首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper proposes an unscented Kalman filter (UKF) based coordinative, simultaneous localization and mapping (CSLAM) system, in which robots share common mapping information. The SLAM information obtained by a master robot is shared with slave robots, which estimate only their own localizations using comparatively simple sensors. The behavior of the slave robots depends on the reconstructed CSLAM using information transmitted by the master robot. The proposed process reduces the processing burden of the slave robots, which results in a reduction of the calculation time and the complexity of their hardware system. By comparing the proposed algorithm with some conventional methods in terms of system stability, the efficiency of the proposed method is verified.  相似文献   

2.
Currently, most teleoperation work is focusing on scenarios where slave robots interact with unknown environments. However, in some fields such as medical robots or rescue robots, the other typical teleoperation application is precise object transportation. Generally, the object’s weight is unknown yet essential for both accurate control of the slave robot and intuitive perception of the human operator. However, due to high cost and limited installation space, it is unreliable to employ a force sensor to directly measure the weight. Therefore, in this paper, a control scheme free of force sensor is proposed for teleoperation robots to transfer a weight-unknown object accurately. In this scheme, the workspace mapping between master and slave robot is firstly established, based on which, the operator can generate command trajectory on-line by operating the master robot. Then, a slave controller is designed to follow the master command closely and estimate the object’s weight rapidly, accurately and robust to unmodeled uncertainties. Finally, for the sake of telepresence, a master controller is designed to generate force feedback to reproduce the estimated weight of the object. In the end, comparative experiments show that the proposed scheme can achieve better control accuracy and telepresence, with accurate force feedback generated in only 500 ms.   相似文献   

3.
贺文人  刘霞  任磊 《计算机应用研究》2020,37(11):3246-3249,3262
针对工业机器人遥操作系统中存在的主从机器人工作空间差异以及运动控制精度与安全问题,提出了一种工作空间映射算法与位置—速度混合控制策略。首先,将遥操作划分为自由运动和交互两个阶段,在自由运动阶段采用映射算法使主从机器人的工作空间高度覆盖,使主机器人可操控的从机器人运动范围最大化。进一步,在交互阶段设计了一种位置—速度混合控制策略对工业机器人的运动进行准确的控制,使主从机器人的实际位置轨迹准确的跟随,并进一步引入反馈引导力以实现安全的控制。最后在Touch-ABB IRB120主从机器人遥操作实验平台上对所提控制方法进行验证,实验结果表明该方法使得主从机器人运动范围在高度覆盖的同时可以保证遥操作控制的精度。  相似文献   

4.
A concurrent localization method for multiple robots using ultrasonic beacons is proposed. This method provides a high-accuracy solution using only low-price sensors. To measure the distance of a mobile robot from a beacon at a known position, the mobile robot alerts one beacon to send out an ultrasonic signal to measure the traveling time from the beacon to the mobile robot. When multiple robots requiring localization are moving in the same block, it is necessary to have a schedule to choose the measuring sequence in order to overcome constant ultrasonic signal interference among robots. However, the increased time delay needed to estimate the positions of multiple robots degrades the localization accuracy. To solve this problem, we propose an efficient localization algorithm for multiple robots, where the robots are in groups of one master robot and several slave robots. In this method, when a master robot calls a beacon, all the group robots simultaneously receive an identical ultrasonic signal to estimate their positions. The effectiveness of the proposed algorithm has been verified through experiments.  相似文献   

5.
Synchronization of bilateral teleoperators with time delay   总被引:1,自引:0,他引:1  
Bilateral teleoperators, designed within the passivity framework using concepts of scattering and two-port network theory, provide robust stability against constant delay in the network and velocity tracking, but cannot guarantee position tracking in general. In this paper we fundamentally extend the passivity-based architecture to guarantee state synchronization of master/slave robots in free motion independent of the constant delay and without using the scattering transformation. We propose a novel adaptive coordination architecture which uses state feedback to define a new passive output for the master and slave robots containing both position and velocity information. A passive coordination control is then developed which uses the new outputs to state synchronize the master and slave robots in free motion. The proposed algorithm also guarantees ultimate boundedness of the master/slave trajectories on contact with a passive environment. Experimental results are also presented to verify the efficacy of the proposed algorithms.  相似文献   

6.
This paper presents a synchronization scheme of bilateral teleoperation systems using composite adaptive controller. To design a controller for bilateral teleoperation systems, all the parameters of the master and the slave robots need to be known. However, there exist parameter uncertainties in the robot manipulators. A composite adaptive controller is designed for convergence of states and parameters of the master and the slave robots in the presence of parameter uncertainties. Consequently, position and force tracking problems in free and contact motion are solved in a synchronized manner. Through a number of simulations, the superiority of the proposed method over existing works is illustrated. Furthermore, for the validation of utility of the proposed method in an actual embedded system, the algorithms are implemented and tested in FPGA-based hardware controller.  相似文献   

7.
With the widespread use of multi-legged robots in various applications, new challenges have arisen in terms of designing their control systems, one of which is posed by the multiple degrees of freedom of the robotic legs. This paper proposes a novel method for the bilateral teleoperation control of a hexapod robot by using a semi-autonomous strategy. In this teleoperation system, the body velocities of the slave robot and the displacements of the master robot are mapped to each other. The angular velocities of the joints of the legs rely on independent planning to achieve a horizontal movement. A controller is designed based on the difference between the expected velocity and the actual velocity of the body, and the difference is fed back to the operator in the form of haptic force. Therefore, the transparency of the control system is guaranteed by increasing the damping compensation both in the master and slave robots. In addition, the stability of the bilateral teleoperation control system of the hexapod robot is guaranteed by passivity theory, and the proposed method is verified by conducting semi-physical simulation experiments.  相似文献   

8.
In this paper, a fuzzy force control framework is proposed for dual-industrial robot systems. The master/slave control method is used in dual-robot systems. Two MITSUBISHI MELFA RV-M1 industrial robots, one is equipped with an BL Force/Torque sensor and the other is not, are utilized for implementing the dual-arm system. In order to adapt various stiffness of the holding object, an adaptable fuzzy force control scheme has been proposed to improve the performance. The ability of the adaptable force control system is achieved by tuning the scaling factor of the fuzzy logic controller. Successful experiments are carried out for the dual-robot system handling an object.  相似文献   

9.
Neural Network Force Control for Industrial Robots   总被引:1,自引:0,他引:1  
In this paper, we present a hierarchical force control framework consisting of a high level control system based on neural network and the existing motion control system of a manipulator in the low level. Inputs of the neural network are the contact force error and estimated stiffness of the contacted environment. The output of the neural network is the position command for the position controller of industrial robots. A MITSUBISHI MELFA RV-M1 industrial robot equipped with a BL Force/Torque sensor is utilized for implementing the hierarchical neural network force control system. Successful experiments for various contact motions are carried out. Additionally, the proposed neural network force controller together with the master/slave control method are used in dual-industrial robot systems. Successful experiments are carried out for the dual-robot system handling an object.  相似文献   

10.
To ease the control of a nonholonomic robot by a non-expert, a neuro-interface is proposed by using the concept of a virtual master–slave system. The design procedure for the interface is elaborated for the control of nonholonomic two-wheeled robots. In particular, it is shown that if the coordinate transformation from the slave to the master is assumed to be known, the resultant inverse mapping of the master robot can be simply realized by a neural network (NN) with all linear units. The training of the NN is performed by an offline method. As a result, the effectiveness of the proposed method is shown for some simulations to solve a trajectory tracking control problem with a nonholonomic mobile robot.This work was presented, in part, at the 9th International Symposium on Artifical Life and Robotics, Oita, Japan, January 28–30, 2004  相似文献   

11.
This article proposes a computer architecture suitable for intelligent robots, especially for self-contained intelligent mobile robots. The main principles proposed by the authors are: (1) The robot should be a multiprocessor system with a master, several slave modules and a console. A simple star connection is employed. (2) The master carries user's programs written in a high level language with which a programmer is able to use all basic functions in the robots. It should have a special purpose operating system. (3) Each module is an independent microcomputer system loosely coupled to the master and dedicated to an elementary function such as manipulation, locomotion, sensing, or planning. (4) A serial TTL level or RS232C interface is employed between the master and each module. Two self-contained robots, Yamabico 9 and 10, constructed under these design principles have demonstrated the effectiveness of this proposed architecture.  相似文献   

12.
In this paper, we investigate state and imped-ance reflection based robust control strategy for bilateral shared telerobotic system under unsymmetrical time varying delay. Shared input for both master and slave robot is designed by combining delayed position and position-velocity signals with impedance reflection properties of the interaction between slave and environment and between human and master robot manipulator. Adaptive control algorithm is proposed to estimate the interaction properties between human and master manipulator and between slave and remote environment. Then, the delayed estimated interaction properties are reflected back to the master and slave robot manipulator to match with the estimated impedance properties of the interaction between human and remote environment. We combine robust term with adaptive control term to deal with the uncertainty associated with gravity loading vector, unmodeled dynamic and external disturbance. The stability conditions with time varying delays are derived by using Lyapunov-Krasovskii functional. Experimental results are given to demonstrate the validity of the proposed design for real-time applications.  相似文献   

13.
实现比率遥操作系统稳定性与性能折衷的策略   总被引:1,自引:0,他引:1  
临场感比率遥操作系统要求在保证系统稳定的同时能增强系统性能.本文通过系统建模、引入二端口网络的莱威林(Llewellyn)绝对稳定性准则,在定义比率系统的理想性能、导出实现理想性能的主从系统控制参数的约束条件后,分析了实现理想性能时系统的稳定性;基于莱威林准则,在实现理想性能的基础上调节主从系统阻抗,提出了在操作者与环境无源条件下能在系统绝对稳定性和增强性能之间折衷的控制策略.仿真表明了此策略的有效性.  相似文献   

14.
In this paper, a novel heuristic algorithm is proposed to solve continuous non-linear optimization problems. The presented algorithm is a collective global search inspired by the swarm artificial intelligent of coordinated robots. Cooperative recognition and sensing by a swarm of mobile robots have been fundamental inspirations for development of Swarm Robotics Search & Rescue (SRSR). Swarm robotics is an approach with the aim of coordinating multi-robot systems which consist of numbers of mostly uniform simple physical robots. The ultimate aim is to emerge an eligible cooperative behavior either from interactions of autonomous robots with the environment or their mutual interactions between each other. In this algorithm, robots which represent initial solutions in SRSR terminology have a sense of environment to detect victim in a search & rescue mission at a disaster site. In fact, victim’s location refers to global best solution in SRSR algorithm. The individual with the highest rank in the swarm is called master and remaining robots will play role of slaves. However, this leadership and master position can be transitioned from one robot to another one during mission. Having the supervision of master robot accompanied with abilities of slave robots for sensing the environment, this collaborative search assists the swarm to rapidly find the location of victim and subsequently a successful mission. In order to validate effectiveness and optimality of proposed algorithm, it has been applied on several standard benchmark functions and a practical electric power system problem in several real size cases. Finally, simulation results have been compared with those of some well-known algorithms. Comparison of results demonstrates superiority of presented algorithm in terms of quality solutions and convergence speed.  相似文献   

15.
In this paper near-minimum time controllers for coordinating flexible two-link robots carrying an object in a workspace are developed. Bang-bang control theory in conjunction with synchronization of execution time for each joint is used to derive the near-minimum lime controller. The near-minimum time control law is implemented for two distinct cases. One is for a single flexible robot grasping a payload white the other is for a master/slave configuration for the motion of two flexible robots and their load. Simulation results indicate the feasibility of the proposed schemes.  相似文献   

16.
Two articulated robots working in a shared workspace can be programmed by planning the tip trajectory of each robot independently. To account for collision avoidance between links, a real-time velocity alteration strategy based on fast and accurate collision detection is proposed in this paper to determine the step of next motion of slave (low priority) robot for collision-free trajectory planning of two robots with priorities. The effectiveness of the method depends largely on a newly developed method of accurate estimate of distance between links. By using the enclosing and enclosed ellipsoids representations of polyhedral models of links of robots, the minimum distance estimate and collision detection between the links can be performed more efficiently and accurately. The proposed strategy is implemented in an environment where the geometric paths of robots are pre-planned and the preprogrammed velocities are piecewise constant but adjustable. Under the control of the proposed strategy, the master robot always moves at a constant speed. The slave robot moves at the selected velocity, selected by a tradeoff between collision trend index and velocity reduction in one collision checking time, to keep moving as far as possible and as fast as possible while avoid possible collisions along the path. The collision trend index is a fusion of distance and relative velocity between links of two robots to reflect the possibility of collision at present and in the future. Graphic simulations of two PUMA560 robot arms working in common workspace but with independent goals are conducted. Simulations demonstrate the collision avoidance capability of the proposed approach as compared to the approach based on bounding volumes. It shows that advantage of our approach is less number of speed alterations required to react to potential collisions.  相似文献   

17.
Effective haptic performance in teleoperation control systems can be achieved by solving two major problems: the time‐delay in communication channels and the transparency of force control. The time‐delay in communication channels causes poor performance and even instability in a system. The transparency of force feedback is important for an operator to improve the performance of a given task. This article suggests a possible solution for these two problems through the implementation of a teleoperation control system between the master haptic device and the slave mobile robot. Regulation of the contact force in the slave mobile robot is achieved by introducing a position‐based impedance force control scheme in the slave robot. The time‐delay problem is addressed by forming a Smith predictor configuration in the teleoperation control environment. The configuration of the Smith predictor structure takes the time‐delay term out of the characteristic equation in order to make the system stable when the system model is given a priori. Since the Smith predictor is formulated from exact linear modeling, a neural network is employed to identify and model the slave robot system as a nonlinear model estimator. Simulation studies of several control schemes are performed. Experimental studies are conducted to verify the performance of the proposed control scheme by regulating the contact force of a mobile robot through the master haptic device.  相似文献   

18.
遥操作护理机器人系统的操作者姿态解算方法研究   总被引:1,自引:0,他引:1  
左国玉  于双悦  龚道雄 《自动化学报》2016,42(12):1839-1848
设计了一种遥操作护理机器人系统,为实现从端同构式机器人的随动运动控制,对主端操作者人体姿态解算方法进行了研究.首先,构建由惯性传感单元构成的动作捕捉系统,对用作从端机器人动作指令的操作者人体姿态信息进行采集,采用四元数法对人体运动原始数据进行初步求解.其次,将四元数法得到的姿态数据解算成依据仿人结构设计的护理机器人各关节运动的目标姿态角,实现人体姿态到机器人动作的同构性映射.最后,为验证本文所提姿态解算方法的性能,设计了操作者控制护理机器人完成递送和拿取药瓶动作的实验.结果表明,本文姿态解算方法的解算性能与参考系统基本相同;在操作者动作姿态快速变化的时间段,系统仍可获得较高精度的目标姿态数据,其误差在动态条件下依旧能保持在2%以下;护理机器人可较好地实时复现操作者的人体动作.本文方法能满足机器人进行一般护理作业时对人体姿态数据处理的快速性和准确性要求.  相似文献   

19.
This paper proposes a proportional derivative (PD)-like controller applied to the delayed bilateral teleoperation of wheeled robots with force feedback in face of asymmetric and varying-time delays. In contrast to bilateral teleoperation of manipulator robots, in these systems, there is a mismatch between the models of the master and slave (mobile robot), problem that is approached in this work, where the system stability is analysed. From this study, it is possible to infer the control parameters, depending on the time delay, necessary to assure stability. Finally, the performance of the delayed teleoperation system is evaluated through tests where a human operator drives a 3D simulator as well as a mobile robot for pushing objects.  相似文献   

20.
李家霖  杨洋  杨铁  赵亮  于鹏 《机器人》2020,42(6):651-660
为了更好地促进机器人适应复杂的遥操作任务,开发了能够精确获取人体上肢运动信息的外骨骼式遥操作主手,并通过异构映射算法,实现对6自由度协作机械臂的遥操作.首先,基于人体仿生结构,设计了可穿戴式8自由度外骨骼主手(臂部7自由度和手部1自由度);其次,通过改进的D-H(Denavit-Hartenberg)方法建立遥操作系统的运动学模型,基于Matlab的机器人工具箱进行了工作空间仿真,并设计主从异构映射算法;最后,实验验证外骨骼主手在遥操作系统中的可操作性,以及工作空间异构映射算法的可行性.实验表明,外骨骼主手能够控制从端机械手臂,且保证末端位置和姿态一致,可在大范围工作空间内复现人体上肢精细运动,主从跟随误差达2 mm,工作空间类似于直径1.08 m的半球形.因此,可穿戴式的外骨骼主手使操作者能更加直观地参与到遥操作系统当中,辅助操作者更加高效地完成精细复杂任务.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号