首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
In this article, a fault-tolerant voltage source inverter (VSI) is proposed for a novel topology of stand-alone doubly fed induction generator (DFIG) feeding an isolated DC load. In this topology, stator and rotor sides of DFIG are connected to DC-bus through a diode rectifier and VSI, respectively. The fault-tolerant VSI includes a redundant leg connected by bidirectional switches in order to replace the faulted leg and improve the reliability of the proposed system. The field oriented control strategy is adopted to control the d and q-axis rotor currents in order to maintain the voltage and the frequency at the output of the generator constant. A novel, easy and fast approach for fault detection and isolation (FDI) of open-switch damage in insulated gate bipolar transistor-based VSI is proposed in this study. This approach is developed using mathematical transformations such as a hysteresis detector, an integrator and a trigger. The FDI algorithm proposed here does not require the knowledge of the system model and is independent from its complexity. Simulations results are illustrated for a 3.7 kW DFIG feeding a DC load with open-switch fault in VSI that confirm the concepts proposed in this study.  相似文献   

2.
Face to the growing number of applications using DC–DC power converters, the improvement of their reliability is subject to an increasing number of studies. Especially in safety critical applications, designing fault-tolerant converters is becoming mandatory. In this paper, a switch fault-tolerant DC–DC converter is studied. First, some of the fastest Fault Detection Algorithms (FDAs) are recalled. Then, a fast switch FDA is proposed which can detect both types of failures; open circuit fault as well as short circuit fault can be detected in less than one switching period. Second, a fault-tolerant converter which can be reconfigured under those types of fault is introduced. Hardware-In-the-Loop (HIL) results and experimental validations are given to verify the validity of the proposed switch fault-tolerant approach in the case of a single switch DC–DC boost converter with one redundant switch.  相似文献   

3.
This paper presents a novel modulation strategy for a power factor corrected (PFC), isolated AC/DC converter derived from the integration of a nonisolated, two switch buck-boost AC/DC converter with an isolated dual active bridge DC/DC converter (2SBBDAB). This strategy, termed discontinuous leading/trailing edge (DLTE) modulation, serves to maximize the duty cycle of the input switch while keeping the current in the buck-boost inductor discontinuous. Hence, the crest factors of the currents in the switching devices are minimized, the input switch is turned on at zero current and the zero-voltage switching ranges of the bridge switches are unaffected by the integration. A conventional isolated, PFC AC/DC converter typically consists of a boost converter cascaded with a forward converter. The ratings required of the power switching devices of the 2SBBDAB employing the DLTE modulation strategy are similar to those required of the conventional design for wide line voltage operation. However, the 2SBBDAB converter has higher line voltage surge immunity than that of the conventional design and, unlike the conventional design, it has inherent inrush current limiting. The DLTE modulation strategy may be applied to the family of converters composed of the two switch buck-boost integrated with half and full-bridge forward converters  相似文献   

4.
王新  许翔  吴博宁  黄冲 《电子科技》2022,35(6):64-69
针对双向AC/DC功率变换器在直流微电网母线电压稳定性方面的问题,文中提出了一种结合LESO和滑模理论的前馈鲁棒控制策略。通过建立直流微电网三相AC/DC双向功率变换器的动态数学模型,架构了三阶线性扩张状态观测器,并将三阶LESO的观测值用于滑模控制器的设计。该控制策略能够在不需要额外电流传感器的情况下实现前馈控制,并确保系统具有良好的动态性能。该策略还能够有效降低滑模控制的实现难度,提高系统的鲁棒性。仿真分析验证了文中所提控制策略的有效性。  相似文献   

5.
This article presents novel terminal sliding modes for finite-time output tracking control of DC–DC buck converters. Instead of using traditional singular terminal sliding mode, two integral terminal sliding modes are introduced for robust output voltage tracking of uncertain buck converters. Different from traditional sliding mode control (SMC), the proposed controller assures finite convergence time for the tracking error and integral tracking error. Furthermore, the singular problem in traditional terminal SMC is removed from this article. When considering worse modelling, adaptive integral terminal SMC is derived to guarantee finite-time convergence under more relaxed stability conditions. In addition, several experiments show better start-up performance and robustness.  相似文献   

6.
This paper presents a new state feedback based control strategy for a PWM AC to DC voltage type converter with phase and amplitude control. In this control strategy the state variables of the LC filter connected to the AC side of the converter are fed back to the PWM pattern generator, thereby eliminating a DC offset of the AC input currents as well as oscillations of the DC output current during transients. Computer simulation of the converter system with the proposed control strategy shows that the transient waveforms of AC input and DC output currents are improved greatly even if the damping effect of the AC side resistance can not be expected. The DC voltage regulation with good dynamic response is also achieved even if DC capacitance is substantially reduced. Experimental results from a low power laboratory model are also included to confirm the simulated results and to demonstrate the effectiveness of the proposed control strategy  相似文献   

7.
A new control process for single-stage three-phase buck-boost type AC-DC power converters with high power factor, sinusoidal input currents and adjustable output voltage is proposed. This converter allows variable power factor operation, but this work focus on achieving unity power factor. The proposed control method includes a fast and robust input current controller based on a vectorial sliding mode approach. The active nonlinear control strategy applied to this power converter, allows high quality input currents. Given the comparatively slow dynamics of the DC output voltage, a proportional integral (PI) controller is adopted to regulate the converter output voltage. The voltage controller modulates the amplitudes of the current references, which are sinusoidal and synchronous with the input source voltages. Experimental results from a laboratory prototype show the high power factor and the low harmonic distortion characteristics of the circuit  相似文献   

8.
Single-stage power factor correction (PFC) AC/DC converters integrate a boost-derived input current shaper (ICS) with a flyback or forward DC/DC converter in one single stage. The ICS can be operated in either discontinuous current mode (DCM) or continuous current mode (CCM), while the flyback or forward DC/DC converter is operated in CCM. Almost all single-stage PFC AC/DC converters suffer from high bulk capacitor voltage stress and extra switch current stress. The bulk capacitor voltage feedback with a coupled winding structure is widely used to reduce both the voltage and current stresses in practical single-stage PFC AC/DC converters. This paper presents a detailed analysis of the bulk capacitor voltage feedback, including the relationship between bulk capacitor voltage, input current harmonics, voltage feedback ratio, and load condition. The maximum bulk capacitor voltage appears when the DC/DC converter operates at the boundary between CCM and DCM. This paper also reveals that only the voltage feedback ratio determines the input current harmonics under DCM ICS and CCM DC/DC operation. The theoretical prediction of the bulk capacitor voltage as well as the predicted input harmonic contents is verified experimentally on a 60 W AC/DC converter with universal-line input  相似文献   

9.
A novel active power factor correction method for power supplies with three-phase front-end diode rectifiers is proposed and analyzed. The implementation of this method requires the use of an additional single switch boost chopper. The combined front-end converter draws sinusoidal AC currents from the AC source with nearly unity input power factor while operating at a fixed switching frequency. It is shown that when the active input power factor correction stage is also used to regulate the converter DC bus voltage, the converter performance can improve substantially in comparison with the conventional three-phase AC-to-DC converters. These improvements include component count reduction, simplified input synchronization logic requirements, and smaller filter refractive components. Theoretical results are verified experimentally. The proposed method has the disadvantage of substantially increasing the current stresses of the switching devices and the high-frequency ripple content of the prefiltered AC input currents  相似文献   

10.
Three-phase converters using diode or silicon-controlled rectifier (SCR) are widely employed to convert the commercial AC supply to DC. Such converters inject harmonics into the power supply system and thereby distort supply system voltage waveform. A simple input current wave-shape improvement technique using a shunt-connected harmonic current compensator is presented in this work, intended to reduce the total harmonic distortion (THD) of input current of three-phase diode and SCR phase-controlled rectifiers operating with inductive loads, by matching them to the specific converter as a combined package. The compensator proposed here comprises of a three-limb voltage source converter using insulated-gate bipolar transistor, working on instantaneous current and voltage measurements of the compensator only and not of the load. The technique uses a simple feedforward control for AC source current harmonic compensation of rectifiers without monitoring the AC line currents, i.e. use of online computation. The proposed system is simulated and tested on a laboratory prototype. The measured input current THD values without additional line filters are found to be below 8.3%, which is within acceptable limits, proving that the new technique is capable of compensating predetermined current harmonics of diode or SCRs.  相似文献   

11.
Optical switches are widely used in telecommunication industry due to their many desirable characteristics. In this paper, robust fault detection and fault-tolerant-control (FTC) system for an uncertain nonlinear MEMS optical switch are presented. The design strategy is based on the second order sliding mode approach. A robust second order nonlinear sliding mode observer capable of filtering unwanted high frequencies due to unmodeled dynamics is used to generate quantities called the the residuals. The residuals are then used for the purpose of fault detection and alarm generation. Once an alarm is registered, a fault tolerant control strategy is employed. Two different fault-tolerant control strategies for the unhealthy system are considered. The first strategy is based on conventional sliding mode, while the second is based on a second order sliding mode theory. Robustness and convergence of the proposed schemes are proved using the second method of Lyapunov and the super-twisting algorithm. A comparative study is then performed to demonstrate the superior capability of second order sliding mode control strategy in fault accommodation. Finally, the effectiveness of the proposed strategy for detection of faults, and subsequent control of the MEMS optical switch is illustrated through simulation studies.  相似文献   

12.
The performance of the parallel resonant power converter and the combination series/parallel resonant power converter (LCC converter) when operated above resonance in a high power factor mode are determined and compared for single phase applications. When the DC voltage applied to the input of these converters is obtained from a single phase rectifier with a small DC link capacitor, a relatively high power factor inherently results, even with no active control of the input line current. This behavior is due to the pulsating nature of the DC link and the inherent capability of the converters to boost voltage during the valleys of the input AC wave. With no active control of the input line current, the power factor depends on the ratio of operating frequency to tank resonant frequency. With active control of the input line current, near-unity power factor and low-input harmonic currents can be obtained  相似文献   

13.
A fault-tolerant ac-ac converter capable of supplying a three-phase induction machine from the grid with an unitary power factor has been proposed. With one faulted converter leg, two of the remaining five legs are connected to the grid, two legs are connected to the machine, and a common leg is shared by the grid and the machine. The previously developed control strategy required a too great computation time for practical implementation. In this paper, a new control strategy is suggested for this power converter. It enables an easier control implementation. Experimental results are provided.  相似文献   

14.
This paper investigates a reduced switch count dc-link ac–ac five-leg converter for three-phase power conversion. The converter provides both an input rectifier and an output inverter by sharing a leg in order to reduce the number of power switches. Scalar and vector pulsewidth modulation techniques are presented and the concepts of local and global apportioning factors are introduced. A control technique that aims at maximizing the utilization of the dc-link voltage is proposed. A hysteresis current controller that allows operating with one leg being shared by the load and grid sides is developed. In addition, several relevant characteristics of the converter are addressed, such as voltage capability, harmonic distortion, shared-leg and capacitor currents, and power rating. The features of such a converter are compared to those of the six-leg and four-leg converters. Selected experimental results are presented.  相似文献   

15.
A boost DC-AC converter: analysis, design, and experimentation   总被引:20,自引:0,他引:20  
This paper proposes a new voltage source inverter (VSI) referred to as a boost inverter or boost DC-AC converter. The main attribute of the new inverter topology is the fact that it generates an AC output voltage larger than the DC input one, depending on the instantaneous duty cycle. This property is not found in the classical VSI, which produces an AC output instantaneous voltage always lower than the DC input one. For the purpose of optimizing the boost inverter dynamics, while ensuring correct operation in any working condition, a sliding mode controller is proposed. The main advantage of the sliding mode control over the classical control schemes is its robustness for plant parameter variations, which leads to invariant dynamics and steady-state response in the ideal case. Operation, analysis, control strategy, and experimental results are included in this paper. The new inverter is intended to be used in uninterruptible power supply (UPS) and AC driver systems design whenever an AC voltage larger than the DC link voltage is needed, with no need of a second power conversion stage  相似文献   

16.
DC/DC开关变换器滑模变结构控制的新方案   总被引:7,自引:0,他引:7       下载免费PDF全文
本文在滑模等价控制的基础上,考虑实际控制中的非理想切换条件,提出了一种适合PWM型DC/DC开关变换器的滑模变结构控制算法简单的新方案.该控制算法依开关工作周期,动态地对滑模误差进行修正,从而动态地补偿控制量的大小,将有利于近似地保证系统沿着切换面运动,并可以减少系统稳态误差,达到削弱乃至消除高频抖动的目的.以Boost变换器为例的仿真结果表明,本文的控制方案可以减少系统超调,缩短过渡过程时间,改善系统的动态品质,并有效地解决滑模控制中的高频抖动问题.  相似文献   

17.
This paper presents some modified topologies of the neutral-point-clamped converter. In all of them, the main change consists of adding a fourth leg, which is based on the flying-capacitor converter structure. The aim of this additional leg is to provide the converter with fault tolerance. Furthermore, during normal operation mode, this leg is able to provide a stiff neutral voltage. Consequently, the low-frequency voltage oscillations that appear at the neutral point of the standard three-level topology in some operating conditions no longer exist. As a result, the modulation strategy of the three main legs of the converter does not have to take care of voltage balance, and it can be designed to either achieve optimal output voltage spectra or improve the efficiency of the converter. Simulation and experimental results are presented to show the viability of this approach both under normal operation mode and in the event of faults.  相似文献   

18.
文章提出了一种采用电流矢量PWM控制的非线性控制策略,该方案通过电流矢量PWM控制来跟踪电流指令,从而简化了电流型PWM AC/DC变换器波形发生。在建立电流型PWM AC/DC变换器d-q模型基础上,采用输入输出线性化方法实现了解耦控制,给出了理论分析和调节器参数整定算法,并利用Mallab对控制策略进行了仿真,获得了预期效果。  相似文献   

19.
The paper presents an approach for the design of high-voltage (HV) current-controlled switches. HV switch structures, properties, application possibilities as well as ways of merging these switches into structure of HV signal processing components, are discussed. New HV switch structures are specialized and modified for specific applications. The switch applications include voltage switching with minimized current-load imposed on circuitry attached to input and output side of the proposed switches, as well as current switching with minimal or no current load to the current-mode signal-path, in HV power and smart-power integrated systems, like DC/DC converters or output power stages. The switch structures and modes of operation are introduced, simulated and discussed.  相似文献   

20.
摘要:由于双向DC/DC变换器在储能逆变系统中承担能量双向流动任务,因此,系统能量管理关键是对变换器控制策略进行有效选择。针对双闭环控制策略在双向DC/DC变换器动态性能、谐波抑制和抗干扰能力等方面的不足,提出了一种鲁棒反演滑模控制策略,建立了锂离子电池PNGV等效电路模型,搭建双重化双向DC/DC变换器主电路,最终利用实验平台对锂离子电池组在两种控制策略下的充放电情况进行对比分析,同时对鲁棒反演滑模控制策略下输入电压大幅扰动进行了研究。实验和仿真验证了所提出方法的有效性,在锂离子电池组充放电控制上鲁棒反演滑模控制策略相对于双闭环控制策略更具有优势,且该控制策略对于提高蓄电池的充放电效率具有普遍性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号