共查询到19条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
5.
6.
《煤矿安全》2017,(5):41-45
为了研究解吸附煤样的自燃特性,运用煤低温氧化试验系统测试了煤样在氮气条件下恒温解吸附及解吸附再次氧化升温特性,分析了解吸附过程的气体产物规律和解吸附煤样的自燃特性参数,研究原煤和解吸附煤样的氧化、放热特性。结果表明:恒温解吸附过程中产生CO、CO_2、CH_4气体,CO_2的气体产生量远大于CO、CH_4,随着箱温温度的升高,气体产量也增大;与原煤相比,恒温30℃和50℃解吸附煤样的耗氧速率、放热强度均小于原煤;在70℃之前,恒温70℃解吸附煤样与原煤的耗氧速率和放热强度相似,在90~110℃之间出现交叉温度点,交叉温度点之前原煤的耗氧速率、放热强度大于恒温70℃解吸附煤样,之后小于原煤,说明不同恒温解吸附过程对煤的自燃特性的影响具有一定的差异。 相似文献
7.
为了探究氧化煤的低温氧化特性及演变规律,采用程序升温实验系统,对平煤八矿煤样分别预氧化至60 ℃、90 ℃、120 ℃、150 ℃、180 ℃、210 ℃时通入N2绝氧降温形成的氧化煤,进行低温氧化程序升温实验;为进一步揭示不同灭火条件下形成的氧化煤低温氧化行为特征,对煤样预氧化至120 ℃时,通入3种不同体积分数N2灭火后形成的氧化煤,开展低温氧化程序升温测试,测定这两类氧化煤低温氧化过程耗氧速率、标志性气体(CO、CO2)产生率以及放热强度的变化规律。结果表明:氧化煤的耗氧速率、标志性气体产生率和放热强度均小于原煤;预氧化至90 ℃煤样的自燃特性参数更接近原煤,说明预氧化至临界温度的煤更易发生复燃;而预氧化至120 ℃时通入N2的体积分数越高,这类氧化煤的自燃特征参数越接近原煤,说明通入N2体积分数越高的煤复燃能力越强。因此,开采近距离煤层群、复采工作面以及启封火区等区域的煤体时,应防范其发生复燃。 相似文献
8.
9.
预氧化煤自燃特性试验研究 总被引:9,自引:0,他引:9
为研究预氧化煤自燃特性参数变化规律,采用程序升温试验研究原煤和预氧化煤的自燃特性。结果表明:与原煤相比,随着温度增加,预氧化至90℃的煤样耗氧速率、CO产生率、CO2产生率、放热强度均大于原煤;随着温度的增加,预氧化至130℃的煤样与原煤的耗氧速率、CO产生率、放热强度曲线的交叉温度为80~90℃,预氧化至170℃的煤样的交叉温度为110~120℃,小于交叉温度时,预氧化煤的耗氧速率、CO产生率、放热强度大于原煤,超过交叉温度后小于原煤;小于80℃时,预氧化至130、170℃的煤样的CO2产生率大于原煤,超过80℃后小于原煤;预氧化煤的最小浮煤厚度、下限氧浓度极值减小,上限漏风强度极值增大;煤的氧化程度越高,自燃极限参数极值变化量越大。 相似文献
10.
11.
基于吸氧量的煤低温氧化动力学参数测定 总被引:1,自引:0,他引:1
活化能是表征煤自燃倾向性的重要指标.建立了基于吸氧量的煤低温氧化动力学参数计算模型、实验方法及实验装置.研究分析了供气氧体积分数及煤样粒径对测定结果的影响,确定了最佳实验条件,即供气氧体积分数为10%,煤样粒径为0.125~0.25 mm.最后,测定了张集、杨庄和永城煤样的化学动力学参数,其活化能的大小很好的反映了煤样的自燃倾向性. 相似文献
12.
为了考察煤的孔隙分布对煤低温氧化耗氧速率影响机理,利用孔树模型,建立了煤低温氧化耗氧速率的数学模型,得出煤氧化控制由扩散控制转化为动力控制的临界孔径rc(T),rc(T)随着温度升高呈线性增加趋势,表明温度升高,煤氧化逐渐由反应动力控制.该数学模型可确定不同孔分布煤的主要耗氧控制模式,反映耗氧速率与煤孔分布特征、温度的理论变化关系;当煤的有效孔隙率、孔径分布和微孔比已知时,还可用该数学模型对煤的耗氧速率进行预测. 相似文献
13.
14.
15.
水分对煤低温氧化耗氧量影响的研究 总被引:2,自引:0,他引:2
水分在煤低温氧化过程中的作用具有两面性,根据其水分含量的多少促进或抑制煤的自燃。采用程序温升法研究了原煤样和50℃干燥煤样低温(≤100℃)氧化过程的耗氧量变化规律。对比分析表明,不同水分条件煤样耗氧量随温度的升高总体呈增加趋势,义马和朱仙庄原煤在初始阶段出现耗氧量减小,说明在100℃以前煤的升温特性主要受外在水分的影响;干燥后耗氧量相对原煤有显著增大,外在水分蒸发时吸收大量的热,以汽化潜热的方式带走,使煤体周围的热量不易聚集,且蒸汽压阻止了煤与空气中氧气的接触,外在水分在低温缓慢自热阶段主要起阻化作用;较低含水量与煤表面接触会释放一定量的润湿热而起到促进作用。 相似文献
16.
17.
18.