首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Parallel arrays of Na+/H+ and Cl-/HCO3- antiporters are believed to catalyze the first step of transepithelial electrolyte secretion in lacrimal glands by coupling Na+ and Cl- influxes across acinar cell basolateral membranes. Tracer uptake methods were used to confirm the presence of Na+/H+ antiport activity in membrane vesicles isolated from rabbit lacrimal gland fragments. Outwardly-directed H+ gradients accelerated 22Na+ uptake, and amiloride inhibited 96% of the H+ gradient-dependent 22Na+ flux. Amiloride-sensitive 22Na+ influx was half-maximal at an extravesicular Na+ concentration of 14 mM. In vitro stimulation of isolated lacrimal acini with 10 microM carbachol for 30 min increased Na+/H+ antiport activity of a subsequently isolated basolateral membrane sample 2.5-fold, but it did not significantly affect Na+/H+ antiport activity measured in intracellular membrane samples. The same treatment increased basolateral membrane Na+,K(+)-ATPase activity 1.4-fold; this increase could be accounted for by decreases in the Na+,K(+)-ATPase activities of intracellular membranes. Thus, it appears that cholinergic stimulation causes recruitment of additional Na+,K(+)-ATPase pump units to the acinar cell basolateral plasma membrane. The mechanistic basis of the increase in basolateral membrane Na+/H+ antiport activity remains unclear.  相似文献   

2.
Hyposmotic swelling increased 86Rb release in cultured cerebellar granule neurons (1 day in vitro [DIV]) with a magnitude related to the change in osmolarity. 86Rb release was partially blocked by quinidine, Ba2+, and Cs+ but not by TEA, 4-AP, or Gd3+. 86Rb efflux decreased in Cl(-)-depleted cells or cells treated with DDF or DIDS, suggesting an interconnection between Cl- and K+ fluxes. Swelling induced a substantial increase in [Ca2+]i to which both external and internal sources contribute. However, 86Rb efflux was independent of [Ca2+]0, unaffected by depleting the endoplasmic reticulum (ER) by ionomycin or thapsigargin and insensitive to charybdotoxin, iberiotoxin, and apamin. Swelling-activated 86Rb efflux in differentiated granule neurons after 8 DIV, which express Ca2+-sensitive K+ channels, was not different from that in 1 DIV neurons, nor in time course, net release, Ca2+-dependence, or pharmacological sensitivity. We conclude that the swelling-activated K+ efflux in cerebellar granule neurons is not mediated by Ca2+-sensitive large conductance K+ channels (BK) as in many cell types but resembles that in lymphocytes where it is possibly carried by voltage-gated K+ channels.  相似文献   

3.
Proteinase-activated receptor-2 (PAR-2) is a G protein-coupled receptor that is cleaved by trypsin within the NH2-terminus, exposing a tethered ligand that binds and activates the receptor. We examined the secretory effects of trypsin, mediated through PAR-2, on well-differentiated nontransformed dog pancreatic duct epithelial cells (PDEC). Trypsin and activating peptide (AP or SLIGRL-NH2, corresponding to the PAR-2 tethered ligand) stimulated both an 125I- efflux inhibited by Ca2+-activated Cl- channel inhibitors and a 86Rb+ efflux inhibited by a Ca2+-activated K+ channel inhibitor. The reverse peptide (LRGILS-NH2) and inhibited trypsin were inactive. Thrombin had no effect, suggesting absence of PAR-1, PAR-3, or PAR-4. In Ussing chambers, trypsin and AP stimulated a short-circuit current from the basolateral, but not apical, surface of PDEC monolayers. In monolayers permeabilized basolaterally or apically with nystatin, AP activated apical Cl- and basolateral K+ conductances. PAR-2 agonists increased [Ca2+]i in PDEC, and the calcium chelator BAPTA inhibited the secretory effects of AP. PAR-2 expression on dog pancreatic ducts and PDEC was verified by immunofluorescence. Thus, trypsin interacts with basolateral PAR-2 to increase [Ca2+]i and activate ion channels in PDEC. In pancreatitis, when trypsinogen is prematurely activated, PAR-2-mediated ductal secretion may promote clearance of toxins and debris.  相似文献   

4.
The aims of this study were to characterize the routes of influx of the K+ congener, Rb+, into cardiac cells in the perfused rat heart and to evaluate their links to the intracellular Na+ concentration ([Na+]i) using 87Rb and 23Na nuclear magnetic resonance (NMR) spectroscopy. The rate constant for Rb+ equilibration in the extracellular space was 8.5 times higher than that for the intracellular space. The sensitivity of the rate of Rb+ accumulation in the intracellular space of the perfused rat heart to the inhibitors of the K+ and Na+ transport systems has been analyzed. The Rb+ influx rates were measured in both beating and arrested hearts: both procaine (5 mmol/L) and lidocaine (1 mmol/L) halved the Rb+ influx rate. In procaine-arrested hearts, the Na+,K(+)-ATPase inhibitor ouabain (0.6 mmol/L) decreased Rb+ influx by 76 +/- 24% relative to that observed in untreated but arrested hearts. Rb+ uptake was insensitive to the K+ channel blocker 4-aminopyridine (1 mmol/L). The inhibitor of Na+/K+/2 Cl- cotransport bumetanide (30 mumol/L) decreased Rb+ uptake only slightly (by 9 +/- 8%). Rb+ uptake was dependent on [Na+]i: it increased by 58 +/- 34% when [Na+]i was increased with the Na+ ionophore monensin (1 mumol/L) and decreased by 48 +/- 9% when [Na+]i was decreased by the Na+ channel blockers procaine and lidocaine. Dimethylamiloride (15 to 20 mumol/L), an inhibitor of the Na+/H+ exchanger, slightly reduced [Na+]i and Rb+ entry into the cardiomyocytes (by 15 +/- 5%). 31P NMR spectroscopy was used to monitor the energetic state and intracellular pH (pHi) in a parallel series of hearts. Treatment of the hearts with lidocaine, 4-aminopyridine, dimethylamiloride, or bumetanide for 15 to 20 minutes at the same concentrations as used for the Rb+ and Na+ experiments did not markedly affect the levels of the phosphate metabolites or pHi. These data show that under normal physiological conditions, Rb+ influx occurs mainly through Na+,K(+)-ATPase; the contribution of the Na+/K+/2 Cl- cotransporter and K+ channels to Rb+ influx is small. The correlation between Rb+ influx and [Na+bdi during infusion of drugs that affect [Na+]i indicates that, in rat hearts at 37 degrees C, Rb+ influx can serve as a measure of Na+ influx. We estimate that, at normothermia, at least 50% of the Na+ entry into beating cardiac cells is provided by the Na+ channels, with only minor contributions (< 15%) from the Na+/K+/2 Cl- cotransporter and the Na+/H+ exchanger.  相似文献   

5.
Using the technique of vanadate-facilitated [3H]ouabain binding we have developed a simple and reliable assay for measuring the concentration of [3H]ouabain binding sites in small fresh or frozen biopsies of rumen epithelium papillae. In bovine and ovine rumen epithelium obtained from the cranio-ventral rumen sac the concentration of [3H]ouabain binding sites was 1.6-4.9 nmol g dry wt-1 (n = 32) and 3.7-5.2 nmol g dry wt-1 (n = 6), respectively. When incubated in oxygenated Krebs-Ringer bicarbonate buffer fresh biopsies of rumen epithelium maintained a high K+ and low Na+ content for at least 6 h. Na+ loading of the biopsies induced about 20-fold increase of the Na+, K(+)-pump activity based on measurement of ouabain suppressible net [86Rb+] influx. The ouabain suppressible net influx of [86Rb+] measured in Na+ loaded biopsies showed a close correlation to the [3H]ouabain binding capacity (r = 0.80, P < 0.01) and corresponded to 47 +/- 2% (n = 9) of the theoretical maximum flux rate. The ouabain suppressible net influx of K+ and [86Rb+] were linearly related (r = 0.73; P < 0.001). The net Na+ efflux was 1.21 times the net K+ influx. It is concluded that rumen epithelium has a large capacity for active Na+/K+ transport and that there is agreement between the concentration of [3H]ouabain binding sites in the epithelium and the ouabain suppressible rate of net [86Rb+] influx in Na+ loaded biopsies in spite of some uncertainty about the maximum turnover number of the Na+, K(+)-pump in rumen epithelium.  相似文献   

6.
P2U/2Y-receptors elicit multiple signaling in Madin-Darby canine kidney (MDCK) cells, including a transient increase of [Ca2+]i, activation of phospholipases C (PLC) and A2 (PLA2), protein kinase C (PKC) and mitogen-activated protein kinase (MAPK). This study examines the involvement of these signaling pathways in the inhibition of Na+,K+,Cl- cotransport in MDCK cells by ATP. The level of ATP-induced inhibition of this carrier ( approximately 50% of control values) was insensitive to cholera and pertussis toxins, to the PKC inhibitor calphostin C, to the cyclic nucleotide-dependent protein kinase inhibitors, H-89 and H-8 as well as to the inhibitor of serine-threonine type 1 and 2A phosphoprotein phosphatases okadaic acid. ATP led to a transient increase of [Ca2+]i that was abolished by a chelator of Ca2+i, BAPTA. However, neither BAPTA nor the Ca2+ ionophore A231287, or an inhibitor of endoplasmic reticulum Ca2+-pump, thapsigargin, modified ATP-induced inhibition of Na+,K+, Cl- cotransport. An inhibitor of PLC, U73122, and an inhibitor of MAPK kinase (MEK), PD98059, blocked ATP-induced inositol-1,4, 5-triphosphate production and MAPK phosphorylation, respectively. However, these compounds did not modify the effect of ATP on Na+,K+, Cl- cotransport activity. Inhibitors of PLA2 (AACOCF3), cycloxygenase (indomethacin) and lypoxygenase (NDGA) as well as exogenous arachidonic acid also did not affect ATP-induced inhibition of Na+,K+,Cl- cotransport. Inhibition of the carrier by ATP persisted in the presence of inhibitors of epithelial Na+ channels (amiloride), Cl- channels (NPPB) and Na+/H+ exchanger (EIPA) and was insensitive to cell volume modulation in anisosmotic media and to depletion of cells with monovalent ions, thus ruling out the role of other ion transporters in purinoceptor-induced inhibition of Na+,K+,Cl- cotransport. Our data demonstrate that none of the known purinoceptor-stimulated signaling pathways mediate ATP-induced inhibition of Na+,K+,Cl- cotransport and suggest the presence of a novel P2-receptor-coupled signaling mechanism.  相似文献   

7.
The human ATP1AL1-encoded protein (an alpha subunit of the human non-gastric H,K-ATPase) has previously been shown to assemble with the gastric H,K-ATPase beta subunit (gH,Kbeta) to form a functionally active ionic pump in HEK 293 cells. This pump has been found to be sensitive to both SCH 28080 and ouabain. However, the 86Rb+-influx mediated by the ATP1AL1-gH,Kbeta heterodimer in HEK 293 cells is at least 1 order of magnitude larger than the maximum ouabain-sensitive proton efflux detected in the same cells. In this study we find that the intracellular Na+ content in cells expressing ATP1AL1 and gH,Kbeta is two times lower than that in control HEK 293 cells in response to incubation for 3 h in the presence of 1 microM ouabain. Moreover, analysis of net Na+ efflux in HEK 293 expressing the ATP1AL1-gH,Kbeta heterodimer reveals the presence of Na+ extrusion activity that is not sensitive to 1 microM ouabain but can be inhibited by 1 mM of this drug. In contrast, ouabain-inhibitable Na+ efflux in control HEK 293 cells is similarly sensitive to either 1 microM or 1 mM ouabain. Finally, 86Rb+ influx through the ATP1AL1-gH,Kbeta complex is comparable to the 1 mM ouabain-sensitive Na+ efflux in the same cells. The data presented here suggest that the enzyme formed by ATP1AL1 and the gastric H,K-ATPase beta subunit in HEK 293 cells mediates primarily Na+,K+ rather than H+,K+ exchange.  相似文献   

8.
In an in-vitro preparation of gastric mucosae of Rana pipiens, the effect of adding melittin to a concentration of 5x10-6 M in the secretory solution on the transepithelial potential difference (PD), resistance (R) and short-circuit current (Isc) was studied. In 20 min, melittin decreased the PD by 9.3 mV and R by 148 ohm cm2. These changes can be explained by a decrease in the resistance, RP, of the paracellular pathway. To determine whether specific-ion pathways were responsible for the decrease in R, the effect of melittin on the partial conductances of Cl-, K+ and Na+ was also studied using the ion substitution method. Melittin decreased the PD response to changes in nutrient Na+, K+ and Cl- and the PD response to changes in secretory Cl-, but did not affect PD responses to changes in secretory Na+ or K+. Therefore, melittin decreased the nutrient membrane partial conductances of Cl-, K+ and Na+ and secretory membrane partial conductance of Cl-, without affecting the secretory partial conductances of Na+ or K+. Initially, melittin increased Isc in regular and Cl--free but not in Na+-free solutions. There was a delayed decrease in Isc. The results indicate that melittin decreases RP, increases the Na+ conductance of the secretory membrane and inhibits, eventually, the Na+/K+-ATPase pump.  相似文献   

9.
We investigated in intact cortical kidney tubules the role of PKA-mediated phosphorylation in the short-term control of Na+,K+-ATPase activity. The phosphorylation level of Na+,K+-ATPase was evaluated after immunoprecipitation of the enzyme from 32P-labelled cortical tubules and the cation transport activity of Na+,K+-ATPase was measured by ouabain-sensitive 86Rb+ uptake. Incubation of cells with cAMP analogues (8-bromo-cAMP, dibutyryl-cAMP) or with forskolin plus 3-isobutyl-1-methylxanthine increased the phosphorylation level of the Na+,K+-ATPase alpha-subunit and stimulated ouabain-sensitive 86Rb+ uptake. Inhibition of PKA by H-89 blocked the effects of dibutyryl-cAMP on both phosphorylation and 86Rb+ uptake processes. The results suggest that phosphorylation by PKA stimulates the Na+,K+-ATPase activity.  相似文献   

10.
Drosophila provides an excellent model for delineating the role of ion channels in the origin and transmission of heartbeat. We report here tests in Drosophila on a wide range of mutations and pharmacological agents known to interfere with K+, Ca2+, Na+, and Cl- ion channels in well-characterized ways. We find K+ channels are central to heart function. Tetraethylammonium, which blocks all four K+ currents, slowed the heart. We were able to distinguish among these currents. The mutation slowpoke and the agent charybdotoxin, both of which affect a fast Ca(2+)-gated K+ channel, virtually eliminate heartbeat. Shaker and ether-a-go-go, which encode subunits of K+ channels, have moderate, possibly regulatory effects. "OPQ-type" Ca2+ channels are critical. omega-Conotoxin MVIIC, which blocks these channels, virtually stops the heart. Amiloride, which may affect T-type Ca2+ channels, has no effect, nor do the L-type Ca2+ blockers verapamil and diltiazem. temperature induced paralysis E, involved in the function of Na+ channels, the Na+ channel blockers tetrodotoxin and amiloride, and the Cl- blockers mefanamic and niflumic acids have no effect. Na+ and Cl- channels thus appear unnecessary for cardiac function.  相似文献   

11.
The S4-S5 loop contributes to the ion-selective pore of potassium channels   总被引:8,自引:0,他引:8  
Mutagenesis experiments on voltage-gated K+ channels have suggested that the ion-selective pore is comprised mostly of H5 segments. To see whether regions outside of the H5 segment might also contribute to the pore structure, we have studied the effect of single amino acid substitutions in the segment that connects the S4 and S5 putative transmembrane segments (S4-S5 loop) on various permeation properties of Shaker K+ channels. Mutations in the S4-S5 loop alter the Rb+ selectivity, the single-channel K+ and Rb+ conductances, and the sensitivity to open channel block produced by intracellular tetraethylammonium ion, Ba2+, and Mg2+. The block of Shaker K+ channels by intracellular Mg2+ is surprising, but is reminiscent of the internal Mg2+ blockade of inward rectifier K+ channels. The results suggest that the S4-S5 loop constitutes part of the ion-selective pore. Thus, the S4-S5 loop and the H5 segment are likely to contribute to the long pore characteristic of voltage-gated K+ channels.  相似文献   

12.
1. K+ and Cl- conductances and their putative regulation have been characterized in the rat colonic epithelium by Ussing-chamber experiments, whole-cell and single-channel patch-clamp recordings. 2. The apical Cl- conductance is under the control of intracellular cAMP. An increase in the concentration of this second messenger induces transepithelial Cl- secretion due to the activation of an apical 5-nitro-2-(3-phenylpropylamino)-benzoate (NPPB)- and glibenclamide-sensitive Cl- conductance. 3. In addition to the apical Cl- conductance, the basolateral membrane is equipped with Cl- channels. They are stimulated by cell swelling and play a role in cell volume regulation and transepithelial Cl- absorption. 4. The basolateral K+ conductance is under the dominant control of intracellular Ca2+. An increase in the cytosolic Ca2+ concentration leads to the opening of basolateral K+ channels, which causes a hyperpolarization of the cell membrane, indirectly supporting Cl- secretion owing to an increase in the driving force for Cl- exit. The predominant effect of cAMP on the basolateral K+ conductance is an inhibitory one, probably due to a decrease in the intracellular Ca2+ concentration. 5. The apical K+ conductance, which is involved in transepithelial K+ secretion, is stimulated by an increase in the intracellular Ca2+ concentration. 6. The differential regulation of apical and basolateral ion conductances in the epithelium of the rat distal colon provides an interesting example for the mechanisms underlying vectorial transport of ions across polarized cells.  相似文献   

13.
Natriuretic peptides (NP) act as ligands on the guanylyl cyclase family of receptors. The NP binding site on these receptors is extracellular and the guanylyl cyclase and protein kinase domains are intracellular. The guanylyl cyclase receptor catalyzes the synthesis of the second messenger molecule, cGMP, which activates protein kinase. This in turn is involved in the phosphorylation of various ion transport proteins. Ion transport proteins, which are modulated by NP and are thought to underlie the natriuretic and diuretic actions of NP, include: (a) calcium-activated K+ channels; (b) ATP-sensitive K+ channels; (c) inwardly-rectifying K+ channels; (d) outwardly-rectifying K+ channels; (e) L-type Ca2+ channels; (f) Cl- channels including cystic fibrosis transmembrane conductance regulator Cl- channels; (g) Na+- K+ 2Cl- co-transporter; (h) Na+- K+ ATPase; (i) Na+ channels; (j) stretch-activated channels; and (k) water channels. It appears that NP modulate the kinetics, rather than the conductance, of ion channels. Some of these channels, like the Ca2+, ATP-sensitive K+ and stretch-activated channels, are also involved in NP secretion. In addition, the structural properties of the NP, e.g., ovCNP-22 and ovCNP-39, appear to confer on them the ability to form ion channels. These CNP-formed ion channels can modify the trans-membrane signal transduction and second messenger systems underlying NP-induced pathological effects.  相似文献   

14.
Pancreatic islets prelabelled with either 86Rb or 45Ca were exposed to a rise in D-glucose concentration from 2.8 to 16.7 mM whilst perifused in the presence of 2 microM glibenclamide, 30 mM extracellular K+ and both 30 mM K+ and 250 microM diazoxide. In all three situations, the rise in glucose concentration provoked a dramatic increase in insulin output, despite unchanged or even increased efflux of 86Rb from the prelabelled islets. Also in all three situations, glucose sharply decreased effluent radioactivity from islets prelabelled with 45Ca but perifused in the absence of extracellular Ca2+, while augmenting 45Ca efflux, to a variable extent, from islets perifused at normal extracellular Ca2+ concentration (1.0 mM). It is proposed, therefore, that the insulinotropic action of D-glucose in depolarized islets, and presumably also under normal conditions, may involve the gating of voltage-insensitive Ca2+ channels.  相似文献   

15.
PURPOSE: To determine whether the Na+-K+-2Cl- symport or the parallel Na+/H+ and Cl-/HCO3- antiports provide the dominant pathway for NaCl uptake into the ciliary epithelium. Both pathways are known to support NaCl entry from the stroma into the pigmented ciliary epithelial (PE) cells, after which Na+ and Cl- diffuse across the gap junctions into the nonpigmented ciliary epithelial (NPE) cells and are released into the aqueous humor. METHODS: Rabbit iris ciliary bodies were preincubated in HCO3-/CO2-containing or HCO3-/CO2-free solutions before quick freezing, cryosectioning, dehydration, and electron probe x-ray microanalysis. RESULTS: The NPE and the PE cells contained more K and Cl when incubated with bicarbonate. Inhibition of carbonic anhydrase with 0.5 mM acetazolamide had little effect in HCO3--free medium but prevented the increase in Cl in both cell types in HCO3-/CO2 solution. Inhibition of the Na+-K+-2Cl- symport with 10 to 500 microM bumetanide caused Cl loss from both cell types in HCO3--free solution, but bumetanide produced a paradoxical increase in Cl and Na in HCO3-/CO2 solution. Together, acetazolamide and bumetanide resulted in significant Cl loss in HCO3--free solution and prevented the gains of Cl and Na in HCO3-/CO2 solution. CONCLUSIONS: The present results indicate that the dominant entry pathway of NaCl from the stroma into the ciliary epithelial syncytium is through an acetazolamide-inhibitable Cl-/HCO3 and a parallel Na+/H+ antiport. The dominant release pathways into the aqueous humor appear to be a Na+-K+-2Cl-symport, which can be outwardly directed under physiological conditions, together with the Na+/K+-exchange pumps and Cl- channels.  相似文献   

16.
Recent biophysical investigations of vertebrate olfactory signal transduction have revealed that Ca2+-gated Cl- channels are activated during odorant detection in the chemosensory membrane of olfactory sensory neurons (OSNs). To understand the role of these channels in chemoelectrical signal transduction, it is necessary to know the Cl--equilibrium potential that determines direction and size of Cl- fluxes across the chemosensory membrane. We have measured Cl-, Na+, and K+ concentrations in ultrathin cryosections of rat olfactory epithelium, as well as relative element contents in isolated microsamples of olfactory mucus, using energy-dispersive x-ray microanalysis. Determination of the Cl- concentrations in dendritic knobs and olfactory mucus yielded an estimate of the Cl--equilibrium potential ECl in situ. With Cl- concentrations of 69 mM in dendritic knobs and 55 mM in olfactory mucus, we obtained an ECl value of +6 +/- 12 mV. This indicates that Ca2+-gated Cl- channels in olfactory cilia conduct inward currents in vivo carried by Cl- efflux into the mucus. Our results show that rat OSNs are among the few known types of neurons that maintain an elevated level of cytosolic Cl-. In these cells, activation of Cl- channels leads to depolarization of the membrane voltage and can induce electrical excitation. The depolarizing Cl- current in mammalian OSNs appears to contribute a major fraction to the receptor current and may sustain olfactory function in sweet-water animals.  相似文献   

17.
In goldfish, gonadotropin (GTH-II) responses to the two endogenous GnRHs, salmon-GnRH and chicken-GnRH-II, are mediated by activation of protein kinase C (PKC) and voltage-sensitive Ca2+ channels. In this study, we investigated the role of extracellular Na+, voltage-dependent Na+ channels, and the plasma membrane Na+/H+ exchanger in mediating GnRH-stimulated GTH-II release from dispersed goldfish pituitary cells. Perifusion with Na+-depleted medium reduced the GTH-II response to both GnRHs and the response to the protein kinase C activator, phorbol 12-myristate 13-acetate. Conversely, increasing Na+ influx with veratridine (100 microM) stimulated GTH-II release in the presence and in the absence of extracellular Ca2+. However, the voltage-sensitive Na+ channel blocker, tetrodotoxin (1 microM), did not affect GnRH- stimulated GTH-II release, and the GnRHs did not affect voltage-sensitive Na+ currents. In contrast, the Na+/H+ antiport inhibitors, amiloride or its analog, DMA, reduced GTH-II responses to the GnRHs and phorbol 12-myristate 13-acetate. The Na+/H+ antiport inhibitors did not affect voltage-sensitive Ca2+ or Na+ currents or the GTH-II release response to the Ca2+ ionophore, ionomycin. These findings indicate that extracellular Na+ and the Na+/H+ exchanger are involved in the mediation of GnRH-stimulated GTH-II release. In addition, Na+ entry may modulate GTH-II release independent of extracellular Ca2+.  相似文献   

18.
Biliary epithelial cells (cholangiocytes) modulate bile fluidity and alkalinity absorbing and/or secreting fluid and electrolytes, particularly HCO3- and Cl-. Mechanisms responsible for transepithelial H+/HCO3- secretion in human cholangiocytes are largely unknown. Human cholangiocytes isolated by enzymatic digestion and immunomagnetic purification from normal liver tissue obtained from reduced grafts used for pediatric liver transplantation were cultured in the presence of human hepatocyte growth factor. Maintenance of cholangiocyte phenotypic features was assessed using markers such as cytokeratin 19, gamma-glutamyltranspeptidase, vimentin, factor VIII-related antigen, desmin, epithelial membrane antigen (EMA), and human epithelial antigen (HEA) 125. Intracellular pH (pHi) transients were measured microfluorimetrically 2'7'-Bis(2-carboxyethyl)-5,6, carboxyfluorescein-acetossimethylester (BCECF). In the absence of HCO3-, pHi recovery from an intracellular acid load (ammonia pre-pulse technique) was Na(+)-dependent and amiloride-inhibitable. No Na(+)-independent recovery was recorded even after stimulation with agents raising intracellular cyclic adenosine monophosphate (cAMP) concentrations. In the presence of HCO3-, recovery from an intracellular acid load required Na+, but was only partly inhibited by amiloride. In these conditions H+ extrusion was inhibited by 4,4-diisothiocyan atostilben-2,2-disulfonic acid (DIDS) and by intracellular Cl- depletion. Acute removal of extracellular Cl induced a pHi alkalinization that was inhibited by DIDS. pHi recovery from an intracellular alkaline load (isohydric CO2 changes) was Cl(-)-dependent and DIDS-inhibitable. Administration of agents raising intracellular cAMP concentrations increased both Na(+)-dependent and Na(+)-independent Cl-/HCO-3 exchange activity. Stimulation of Cl-/HCO3- exchange activity was not prevented by the Cl- channel inhibitor 5'-nitro-2(2)-phenylpropyl-amino-benzoate(NPPB). In conclusion, human cholangiocytes possess two acid extruders (Na+/H+exchanger and Na(+)-dependent Cl-/HCO3- exchange) and an acid loader (Cl-/HCO3- exchange), whereas no evidence was found for cAMP activated H(+)-ATPase. Bicarbonate influx is thus mainly mediated by Na-dependent Cl-/HCO3- exchange, whereas Na+:HCO-3 cotransport is not active in the physiological range of pHi. Stimulation of Na(+)-independent Cl-/HCO3- exchanger by cAMP does not require activation of Cl- conductances. These mechanisms may underlay hormone-regulated biliary HCO3- secretion in the human biliary tree.  相似文献   

19.
Chromanols, which were recently shown to inhibit cAMP-mediated Cl- secretion in colon crypts via a blockade of a cAMP-activated K+ conductance, were analyzed for their effects on distinct cloned K+ channels expressed in Xenopus oocytes. The lead chromanol 293B specifically inhibited I(sK) channels with an IC50 of 7 micromol/l without affecting the delayed rectifier Kv1.1 or the inward rectifier Kir2.1. Moreover, several other chromanols displayed the same rank order of potency for I(sK) inhibition as demonstrated in colon crypts. Finally, we tested the effects of the previously described I(sK) blocker azimilide on cAMP mediated Cl- secretion in rat colon crypts. Similar to 293B azimilide inhibited the forskolin induced Cl- secretion. These data suggest that I(sK) protein induced K+ conductances are the targets for the chromanol 293B and its analogues, and azimilide.  相似文献   

20.
T cell antigen receptor signal transduction   总被引:2,自引:0,他引:2  
1. COS-7 cells transfected with the cDNA of the human dopamine transporter (DAT cells) or the human noradrenaline transporter (NAT cells) were loaded with [3H]-dopamine or [3H]-noradrenaline and superfused with buffers of different ionic composition. 2. In DAT cells lowering the Na+ concentration to 0, 5 or 10 mM caused an increase in 3H-efflux. Cocaine (10 microM) or mazindol (0.3 microM) blocked the efflux at low Na+, but not at 0 Na+. Lowering the Cl- concentration to 0, 5 or 10 mM resulted in an increased efflux, which was blocked by cocaine or mazindol. Desipramine (0.1 microM) was without effect in all the conditions tested. 3. In NAT cells, lowering the Na+ concentration to 0, 5 or 10 mM caused an increase in 3H-efflux, which was blocked by cocaine or mazindol. Desipramine produced a partial block, its action being stronger at 5 or 10 mM Na+ than at 0 mM Na+. Efflux induced by 0, 5 or 10 mM Cl- was completely blocked by all three uptake inhibitors. 4. In cross-loading experiments, 5 mM Na(+)- or 0 Cl(-)-induced efflux was much lower from [3H]-noradrenaline-loaded DAT, than NAT cells and was sensitive to mazindol, but not to desipramine. Efflux from [3H]-dopamine-loaded NAT cells elicited by 5 mM Na+ or 0 Cl- was blocked by mazindol, as well as by desipramine. 5. Thus cloned catecholamine transporters display carrier-mediated efflux of amines if challenged by lowering the extracellular Na+ or Cl-, whilst retaining their pharmacological profile. The transporters differ with regard to the ion dependence of the blockade of reverse transport by uptake inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号