首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new yellow pigment with the pyrochlore structure CaxY2− x V x Ti2− x O7 was prepared as a substitute for the decreasing variety of available yellow ceramic pigments due to the severe regulation of toxic lead and cadmium. The solubility limit of vanadium in this pigment was found to be 1.5 wt% as V2O5 or 0.13 as x in the above formula expression. Characterization of vanadium in the vanadium pyrochlore yellow pigment by electron spectroscopy for chemical analysis and electron spin resonance showed that the oxidation state of vanadium was V5+ and its yellow color mostly originated from V5+ substituted for Ti4+. Comparison of color characteristics of CaxY2− x V x Ti2− x O7 with those of commercial V–SnO2 and V–ZrO2 revealed that Ca x Y2− x V x Ti2−O7 had better color strength and brightness than the commercial pigments.  相似文献   

2.
The effect of the addition of V2O5 on the structure, sintering and dielectric properties of M -phase (Li1+ x − y Nb1− x −3 y Ti x +4 y )O3 ceramics has been investigated. Homogeneous substitution of V5+ for Nb5+ was obtained in LiNb0.6(1− x )V0.6 x Ti0.5O3 for x ≤ 0.02. The addition of V2O5 led to a large reduction in the sintering temperature and samples with x = 0.02 could be fully densified at 900°C. The substitution of vanadia had a relatively minor adverse effect on the microwave dielectric properties of the M -phase system and the x = 0.02 ceramics had [alt epsilon]r= 66, Q × f = 3800 at 5.6 GHz, and τf= 11 ppm/°C. Preliminary investigations suggest that silver metallization does not diffuse into the V2O5-doped M -phase ceramics at 900°C, making these materials potential candidates for low-temperature cofired ceramic (LTCC) applications.  相似文献   

3.
The formation process and microwave dielectric properties of the Mg2V2O7 ceramics were investigated. The MgV2O6 phase that was formed at around 450°C interacted with remnant MgO above 590°C to form a homogeneous monoclinic Mg2V2O7 phase. Finally, this monoclinic Mg2V2O7 phase was changed to a triclinic Mg2V2O7 phase for the specimen fired at 800°C. Sintering at 950°C for more than 5 h produced high-density triclinic Mg2V2O7 ceramics. In particular, the Mg2V2O7 ceramics sintered at 950°C for 10 h exhibited the good microwave dielectric properties of ɛr=10.5, Q × f =58 275 GHz, and τf=−26.9 ppm/°C.  相似文献   

4.
The phase relations in the pseudo-ternary system La2O3–SrO–Fe2O3 have been investigated in air. Isothermal sections at 1100° and 1300°C are presented based on X-ray diffraction and thermal analysis of annealed samples. Extended solid solubility was observed for the compounds Sr n +1− v La v Fe n O3 n +1−δ ( n =1, 2, 3, and ∞) and Sr1− x La x Fe12O19, while only limited solubility of La in Sr4− z La z Fe6O13±δ was observed. At high Fe2O3 content, a liquid with low La2O3 content was stable at 1300°C.  相似文献   

5.
Li2CO3 was added to Mg2V2O7 ceramics in order to reduce the sintering temperature to below 900°C. At temperatures below 900°C, a liquid phase was formed during sintering, which assisted the densification of the specimens. The addition of Li2CO3 changed the crystal structure of Mg2V2O7 ceramics from triclinic to monoclinic. The 6.0 mol% Li2CO3-added Mg2V2O7 ceramic was well sintered at 800°C with a high density and good microwave dielectric properties of ɛ r=8.2, Q × f =70 621 GHz, and τf=−35.2 ppm/°C. Silver did not react with the 6.0 mol% Li2CO3-added Mg2V2O7 ceramic at 800°C. Therefore, this ceramic is a good candidate material in low-temperature co-fired ceramic multilayer devices.  相似文献   

6.
The subsolidus phase diagram of the system Bi2O3–ZnO–Ta2O5 in the region of the cubic pyrochlore phase has been determined at 1050°C. This phase forms a solid solution area that includes the ideal composition P, Bi3Zn2Ta3O14; possible solid solution mechanisms are proposed, supported by density measurements of Zn-deficient solid solutions. The general formula of the solid solutions is Bi3+ y Zn2− x Ta3− y O14− x − y , based on the creation of Zn2+, O2− vacancies in Zn-deficient compositions and a variable Bi/Ta ratio.  相似文献   

7.
Two cubic pyrochlore phases exist in the system ZnO–Bi2O3–Sb2O5. Neither has the supposed "ideal" stoichiometry, Zn2Bi3Sb3O14. One, P 1, is a solid solution phase, Zn2+ x Bi2.96−( x − y )Sb3.04− y O14.04+δ where 0< x <0.13(1), 0< y <0.017(2) and a =10.4285(9)−10.451(1) Å. The other, P 2, is a line phase, Zn2Bi3.08Sb2.92O13.92 with a =10.462(2) Å. Subsolidus phase relations at 950°C involving phases P 1 and P 2 in the ZnO–Bi2O3–Sb2O5 phase diagram have been determined.  相似文献   

8.
Fast lithium ion conducting glass-ceramics have been successfully prepared from the pseudobinary system 2[Li1+ x Ti2Si x P3− x O12]-AlPO4. The major phase present in the glass-ceramics was LiTi2P3O12 in which Ti4+ ions and P5+ ions were partially replaced by Al3+ ions and Si4+ ions, respectively. Increasing x resulted in a considerable enhancement in conductivity, and in a wide composition range extremely high conductivity over 10−3 S/cm was obtained at room temperature.  相似文献   

9.
Subsolidus phase relationships in the Ga2O3–Al2O3–TiO2 system at 1400°C were studied using X-ray diffraction. Phases present in the pseudoternary system include TiO2 (rutile), Ga2−2 x Al2 x O3 ( x ≤0.78 β-gallia structure), Al2−2 y Ga2 y O3 ( y ≤0.12 corundum structure), Ga2−2 x Al2 x TiO5 (0≤ x ≤1 pseudobrookite structure), and several β-gallia rutile intergrowths that can be expressed as Ga4−4 x Al4 x Ti n −4O2 n −2 ( x ≤0.3, 15≤ n ≤33). This study showed no evidence to confirm that aluminum substitution of gallium stabilizes the n =7 β-gallia–rutile intergrowth as has been mentioned in previous work.  相似文献   

10.
La1− y Sr y Fe1− x Al x O3−δ perovskites were studied as potential materials for solid-oxide fuel cell (SOFC) cathodes. The phase relations in the LaFeO3–SrFeO3−δ–LaAlO3 system were investigated by X-ray powder diffraction analysis. The defect structure of the La1− y Sr y Fe1− x Al x O3−δ perovskites was investigated by Mössbauer spectroscopy and weight-loss analysis. Relations between the nonstoichiometry and the conductivity of the La1− y Sr y Fe1− x Al x O3−δ perovskites were investigated. The incorporation of aluminum ( x ) into LaFe1− x AlxO3 was found to have no influence on the defect structure but to decrease the conductivity. The incorporation of strontium ( y ) into La1− y Sr y Fe1− x Al x O3−δ promotes the formation of anion vacancies and Fe4+ that lead to higher conductivity.  相似文献   

11.
Tin (Sn) substitution into the B-site and Nd/Sn cosubstitution into the A- and B-sites were investigated in a Ba 6−3 x Sm8+2 x Ti18O54solid solution ( x = 2/3). A small amount of tin substitution for titanium improved the temperature coefficient of resonant frequency (τf) but led to a decrease of the relative dielectric constant (ɛ) and the quality factor ( Qf ). The Ba6−3 x Sm8+2 x (Ti1− z Snz)18O54-based tungsten-bronze phase became unstable for compositions with a tin content of ≥10 mol%, where BaSm2O4and Sm2(Sn,Ti)2O7appeared, and finally, these phases became the major phases. On the other hand, Nd/Sn cosubstitution led to a good combination of high ɛ, high Qf , and near-zero τf. Excellent microwave dielectric properties were achieved in Ba6−3 x (Sm1− y Nd y )8+2 x (Ti1− z Sn z )18O54ceramics with y = 0.8 and z = 0.05 sintered at 1360°C for 3 h: ɛ= 82, Qf = 10 000 GHz, and calculated τf=+17 ppm/°C. The tolerance factor and electronegativity difference exhibited important effects on the microwave dielectric properties, especially the Qf value. A large tolerance factor and high electronegativity difference generally led to a higher Qf value.  相似文献   

12.
The spinel (Mg,Si)Al2O4 was synthesized from aluminum dross using an induction synthesis method. X-ray diffraction analyses on products formed at different temperatures provided an understanding of the formation mechanism of the spinel. After removal of soluble components, the induction heating of the dross resulted first in the oxidation of some of the AlN component and the subsequent formation of the spinel by the following reaction: x SiO2+ (1− x )MgO + [1−( x /3)]Al2O3+ (2 x /3)AlN = (Mg1− x ,Si x )Al2O4+ ( x /3)N2( g ).  相似文献   

13.
Subsolidus phase relationships in the Ga2O3–In2O3–SnO2 system were studied by X-ray diffraction over the temperature range 1250–1400°C. At 1250°C, several phases are stable in the ternary system, including Ga2O3( ss ), In2O3( ss ), SnO2, Ga3− x In5+ x Sn2O16, and several intergrowth phases that can be expressed as Ga4−4 x In4 x Sn n −4O2 n −2 where n is an integer. An In2O3–SnO2 phase and Ga4SnO8 form at 1375°C but are not stable at 1250°C. GaInO3 did not form over the temperature range 1000–1400°C.  相似文献   

14.
MgAl2O4 microwave dielectric ceramics were modified by Zn substitution for Mg, and their dielectric characteristics were evaluated, along with their structures. Dense (Mg1− x Zn x )Al2O4 ceramics were obtained by sintering at 1550°–1650°C in air for 3 h, and the (Mg1− x Zn x )Al2O4 solid solution was determined in the entire composition range. With Zn substitution for Mg, the dielectric constant ɛ of MgAl2O4 just varied from 7.90 to 8.56, while the Q × f value had significantly improved up to a maximal value of 106 000 GHz at x =1.0. Moreover, the τf of MgAl2O4 ceramics had declined from −73 to −63 ppm/°C.  相似文献   

15.
Compounds in a CaO–Y2O3–SnO2 system were prepared by a solid-state reaction at 1673 K. The phase relation in this system was investigated by powder X-ray diffraction. Besides the previously reported ternary compounds, CaSnO3, Ca2SnO4, Y2Sn2O7, and a quaternary compound Ca0.4Y1.2Sn0.4O3, solid-solution series of Ca2− x Y2 x Sn1− x O4 with 0≤ x ≤0.5, and Ca1− y Y2 y Sn1− y O3 with 0≤ y ≤0.2 and 0.95≤ y ≤1.0 were found. The cell parameters of these solid-solution series were refined. The changes of rhombohedral cell parameters in the samples prepared in the range 0.565< y <0.714 of Ca1− y Y2 y Sn1− y O3 suggested the existence of solid solutions of Ca0.4Y1.2Sn0.4O3, although their single phases could not be prepared, except at y =0.6.  相似文献   

16.
Two kinds of solid solution systems of Ta-doped MgTiO3 were identified by X-ray diffraction, which can be represented by the formulae MgTi1− x (Mg1/3Ta2/3) x O3 (0≤ x <0.5) and MgTi1− x Ta x O3 (0≤ x <0.05). The conductivity and microwave dielectric loss for the two solid solution systems were examined by AC impedance and microwave resonator measurements, respectively. In the system MgTi1− x (Mg1/3Ta2/3) x O3, the mechanism for the solid solution formation is the isovalent substitution of for Ti4+. In the system MgTi1− x Ta x O3, the doping mechanism is the aliovalent substitution of Ta5+ for Ti4+, where for a small amount Ta doping, the oxygen vacancies formed during the high-temperature preparation are filled by an extra oxygen introduced from Ta2O5 and further Ta doping leads to an increase in the contents of and electrons, which was consistent with conductivity measurements. In both systems, the Q × f values improved, e.g., ∼17% for the isovalent substitution at x =0.08 and ∼10% for the aliovalent substitution at x =0.02. The filling oxygen vacancy and the substitution of Ta/Mg for Ti may contribute to the improvement of Q × f values for both systems.  相似文献   

17.
The ability of InTa1− x V x O4 ( x =0, 0.002, 0.005, 0.01) and InTaO4− y N y ( y =0, 0.048, 0.059) powders to photocatalyze the oxidative decomposition of gaseous 2-propanol (IPA) when irradiated by the same number of visible or ultraviolet photons was confirmed. The first-principle calculations of InTa0.875V0.125O8 indicated that the V 3d introduced state was discretely situated below the conduction band, which was composed mainly of Ta 5d. Similar calculations of InTaO3.5N0.5 indicated that the N 2p state was above the valence band, which was composed of O2p. These discrete narrow bands were responsible for the visible light sensitivity in the V- or N-doped InTaO4 compounds.  相似文献   

18.
In this study we used solid-state synthesis to determine the phase relations in the pyrochlore-rich part of the Bi2O3−TiO2−Nd2O3 system at 1100°C. The samples were analyzed using X-ray powder diffraction and scanning electron microscopy with energy- and wavelength-dispersive spectroscopy. A single-phase pyrochlore ceramic was obtained with the addition of 4.5 mol% of Nd2O3. We determined the solubility limits for the three solid solutions: (i) the pyrochlore solid solution Bi(1.6–1.08 x )Nd x Ti2O(6.4+0.3 x ), where 0.25< x <0.96; (ii) the solid solution Bi4− x Nd x Ti3O12, where 0< x <2.6; and (iii) the Nd2− x Bi x Ti2O7 solid solution, where 0< x <0.35. The determined phase relations in the pyrochlore-rich part are presented in a partial phase diagram of the Bi2O3−TiO2−Nd2O3 system in air at 1100°C.  相似文献   

19.
The microscopic appearance of the particle surfaces of magnesium vanadium oxide, Mg2-xV1+xO 4 , loose powders prepared in various atmospheres at 1200°C was studied. The surface morphology, observed by SEM, was dependent on the V4+ content, and three typical features were distinguished at the following x values:
  • (1) 

    0.75≤ x <1.00; rounded crystals with smooth surfaces

  • (2) 

    0.55≤ x ≤0.75; edged crystals with stepped surfaces

  • (3) 

    x ≤0.55; coarse crystals with rough surfaces

  相似文献   

20.
The syntheses and the results of unit-cell determinations ofBa3V4O13 and the two forms (low- and high-temperature) of Ba3P4O13 are presented. Ba3V4O13 crystallizes in the monoclinic system, space group Cc or C2/c with unit-cell dimensions a=16.087, b=8.948, c=10.159 (x10nm), β=114.52° Low-Ba3P4O13 crystallizes in the triclinic system, space group P1 or P1 with unit-cell dimensions a=5.757, b=7.243, c=8.104 (x10 nm) α=82.75°, β=73.94°, γ=70.71°. Low-Ba3P4O13 transforms at 870°C into high-Ba3P4O13 which crystallizes in the orthorhombic system, space group Pbcm (No. 57) (or Pbc2, No. 29) with unit-cell dimensions a =7.107, b=13.883, c=19.219 (x10 nm). No relations have been found between the structures of the tribarium tetravanadate and the tribarium tetraphosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号