首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
为优化钯纳米颗粒的化学还原法制备工艺,本文以氯钯酸(H2PdCl4)为前驱体,抗坏血酸(C6H8O6)为还原剂,聚丙烯酸钠(PAAS)为表面活性剂制备钯纳米颗粒。采用正交实验探究不同工艺参数对钯纳米颗粒粒径和形貌的影响。通过 X射线粉末衍射仪(XRD)、场发射扫描电子显微镜(FE-SEM)、透射电子显微镜(TEM)及电化学工作站对制备产物的结构、物相、形貌、电催化性能进行了表征。结果表明:在相同的工艺体系下,通过温度的改变,40 ℃条件下可以得到粒径大小为64.5 nm,球形度较好,分散性高的钯纳米颗粒;90 ℃条件下可以得到粒径大小为45.9 nm的立方体钯纳米颗粒。所制备的球形和立方体钯纳米颗粒对甲酸的电氧化催化活性分别为商业钯黑的1.57倍和1.49倍,在催化剂制备领域有广泛的应用前景。  相似文献   

3.
Hailong Hu 《Materials Letters》2009,63(11):940-942
We report here a facile strategy, Ag-catalyzed reduction of Ni2+ ions, for the synthesis of metallic nickel nanoparticles. The phase structure and morphology of particles were analyzed by means of X-ray diffraction and scanning electron microscopy. It was found that the resultant Ni nanoparticles had narrow size distribution, and the control of particle size could be easily achieved through manipulation of the molar ratio between nickel salts and silver seeds. XRD analysis of the final particles showed the crystalline nickel structure and the presence of metallic Ag, which was influenced by the Ni/Ag molar ratio. The effects of reduction temperature on the final particle size were also investigated.  相似文献   

4.
In our research, the preparation processes of Pd nanoparticles (Pd NPs) with different methods by adding a certain amount of silver nitrate, iron chloride or sodium iodide are presented in order to control their size and morphology. Various sizes and shapes of Pd NPs are observed by alcohol reduction. The results show the size and morphology control of Pd NPs with chemical reductions of Pd salts by ethanol and ethylene glycol (EG) that have very different reduction processes. The modified polyol method with the gradual addition of Pd and polyvinylpyrollidone precursors in EG at 160°C has led to control their size and morphology in the 10?nm range using 0.02?M AgNO3. It is observed that the Pd nanorod is also formed. The main factors that will control the shapes of Pd NPs have been presented to explain their growth and formation mechanisms in a control process.  相似文献   

5.
The morphology of platinum nanoparticles synthesized using an organometallic approach from PtMe(2) (C(8) H(12) ) is influenced by the nature of the ligands used as stabilizing agents. The use of long alkyl chain amines leads to the formation of multipodal nanoparticles that transform into compact nano-objects, adopting cubic, truncated cubic, or cuboctahedral shapes. In contrast, the use of diamine ligands allows the growth of compact (111) arrowlike faces, forming polycrystalline nanoparticles of an overall desert-rose aspect. Different reaction parameters are studied ([ligand]/[metal] ratio, temperature, solvent identity) in order to optimize the various shapes.  相似文献   

6.
本文利用水合低共熔溶剂结合超声法制备了羧基化纤维素纳米纤丝(CNF),并利用其表面的羧基官能团为反应活性位点原位合成了具有均匀分散性和高负载量(9.6 wt%)的CNF-Pd复合催化剂.研究结果表明:CNF-Pd具有显著的限域特性,包括在CNF表面羧基官能团上原位固定生长Pd纳米颗粒的化学限域和CNF冷冻干燥过程中自组...  相似文献   

7.
Monodisperse Au nanoparticles (NPs) have been synthesized at room temperature via a burst nucleation of Au upon injection of the reducing agent t-butylamine-borane complex into a 1, 2, 3, 4-tetrahydronaphthalene solution of HAuCl4·3H2O in the presence of oleylamine. The as-synthesized Au NPs show size-dependent surface plasmonic properties between 520 and 530 nm. They adopt an icosahedral shape and are polycrystalline with multiple-twinned structures. When deposited on a graphitized porous carbon support, the NPs are highly active for CO oxidation, showing 100% CO conversion at −45 °C. This article is published with open access at Springerlink.com  相似文献   

8.
纳米粒度仪是表征纳米材料颗粒大小及其分布的重要仪器.综述了近年来纳米粒度仪在纳米级催化材料及催化载体、磁性材料、光电材料及其它无机功能材料研究中最新的应用进展,提出了其存在的局限性和今后的研发方向.  相似文献   

9.
A new sensor for the detection of hydrogen at parts per million (ppm) levels was fabricated by coating a thin film of palladium-doped activated single-walled carbon nanotube on the inner wall of a glass tube. The response of the sensor was based on the changes in the impedance of the sensor upon the adsorption of hydrogen molecules. The linear dynamic range of the sensor was from 1 to 50?ppm. The relative standard deviation of six replicate analyses of 5?ppm of H2 was 2.1% and the limit of detection was 0.73?ppm for H2 species. Humidity, methane and hydrogen sulphide did not have any serious effect on hydrogen recognition. Also, no interfering effect was observed when 20-fold excess (mass/mass) of carbon dioxide or carbon monoxide was present with hydrogen.  相似文献   

10.
11.
12.
13.
14.
Guang-Wu Yang 《Materials Letters》2008,62(14):2189-2191
Highly monodispersed Ag nanoparticles (NPs) were prepared by a sonochemical method, in which Ag+ in an ethanol solution of AgNO3 was reduced by ultrasound irradiation in the presence of benzyl mercaptan without the additional step of introducing other reducing reagents or protective reagents. In addition to the stabilizing effect, benzyl mercaptan remarkably enhanced the reduction rate, probably due to the thermal decomposition that occurs at the interfacial region between cavitation bubbles and bulk solution and provides reducing radicals. More importantly, the size of Ag NPs can be controlled by simply tuning the initial molar ratio of benzyl mercaptan to Ag, which was confirmed by transmission electron microscopy and ultraviolet-visible absorption spectrometry, as well as X-ray diffraction.  相似文献   

15.
The procedure reported here allows for the size and shape control of CdTe nanowires by means of colloidal chemistry. Thus, ultrathin, straight, saw-tooth-like and one-sided branched nanowires with zinc blende structures could be synthesized. Their formation does not require any catalyst and is most likely due to the oriented attachment of nanoparticles formed in the beginning of the reaction. The use of oleylamine as a solvent turned out to be crucial in order to achieve CdTe nanowires. The reaction between oleic acid and oleylamine in the presence of CdO proved to be essential, not only to activate the Cd precursor but also to provide reaction conditions facilitating nanowire formation by oriented attachment.   相似文献   

16.
Gold nanoparticles of different sizes and shapes have been prepared by UV-photoactivation technique using the micelle TX-100 (poly(oxyethylene)iso-octylphenyl ether) as reducing agent, stabilizing agent as well as template which has been authenticated from the plasmon absorption band and TEM picture. The heating effect on those gold nanoparticles has also been studied.  相似文献   

17.
The condensation of iodobenzene to biphenyl is an industrially important reaction due to its significant role in organic synthesis as drug intermediates. The reaction takes place in the presence of copper powder as catalyst. We have shown in this paper that the size of the copper nanoparticles as well as its exposed surface area is responsible for the yield of chemical reaction. The uncapped copper powder showed a 43% conversion of iodobenzene to biphenyl in 5 h under our experimental conditions. Same amount of copper nanoparticles (size, ∼66 nm diameter) prepared by citrate capping showed 88% conversion of iodobenzene to biphenyl, which increased to about 95% when 8 nm diameter capped copper nanoparticles are used. Surprisingly, 5 nm size copper nanoparticles showed no change in the yield of about 95%.  相似文献   

18.
In a novel water-cyclohexane two-phase system, the aqueous formaldehyde is transferred to cyclohexane phase via reaction with dodecylamine to form reductive intermediates in cyclohexane; the intermediates are capable of reducing silver or gold ions in aqueous solution to form dodecylamine protected silver and gold nanoparticles in cyclohexane solution at room temperature. The prepared silver and gold nanoparticles are examined by transmission electron microscopy (TEM), UV-Visible spectroscopy (UV-vis), X-photon electron spectroscopy (XPS) and Fourier transfer infrared spectroscopy (FT-IR). It is found that these nanoparticles are monodisperse in size of less than 10 nm and have good stability in cyclohexane due to the adsorbed dodecylamine on nanoparticle surface. Moreover, the synthesis mechanism is revealed via gas chromatography (GC), gas chromatography-mass spectroscopy (GC-MS), nuclear magnetic resonance (NMR) analyses of the solutions during the preparation process.  相似文献   

19.
We report a novel biochemical method based on the sacrificial hydrogen strategy to synthesize bimetallic gold (Au)–palladium (Pd) nanoparticles (NPs) with a core/shell configuration. The ability of Escherichia coli cells supplied with H2 as electron donor to rapidly precipitate Pd(II) ions from solution is used to promote the reduction of soluble Au(III). Pre-coating cells with Pd(0) (bioPd) dramatically accelerated Au(III) reduction, with the Au(III) reduction rate being dependent upon the initial Pd loading by mass on the cells. Following Au(III) addition, the bioPd–Au(III) mixture rapidly turned purple, indicating the formation of colloidal gold. Mapping of bio-NPs by energy dispersive X-ray microanalysis suggested Au-dense core regions and peripheral Pd but only Au was detected by X-ray diffraction (XRD) analysis. However, surface analysis of cleaned NPs by cyclic voltammetry revealed large Pd surface sites, suggesting, since XRD shows no crystalline Pd component, that layers of Pd atoms surround Au NPs. Characterization of the bimetallic particles using X-ray absorption spectroscopy confirmed the existence of Au-rich core and Pd-rich shell type bimetallic biogenic NPs. These showed comparable catalytic activity to chemical counterparts with respect to the oxidation of benzyl alcohol, in air, and at a low temperature (90°C).  相似文献   

20.
Abstract

We report the synthesis of hydroxyapatite nanoparticles (HANPs) by the coprecipitation method using calcium D-gluconate and potassium hydrogen phosphate as the sources of calcium and phosphate ions, respectively, and the triblock copolymer F127 as a stabilizer. The HANPs were characterized using scanning electron microscopy, x-ray diffraction, and nitrogen adsorption/desorption isotherms. Removal of F127 by solvent extraction or calcination alters the structure of HANPs. The solvent-extracted HANPs were single crystals with their 〈001〉 axis oriented along the rod axis of the HANP, whereas the calcined HANPs contained two crystal phases that resulted in a spherical morphology. The calcined HANPs had much higher surface area (127 m2 g?1) than the solvent-extracted HANPs (44 m2 g?1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号