首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

A model has been developed to predict the elastic moduli in composites reinforced with both particles and fibers. In the model the matrix material and the particles, which are assumed to be homogeneously distributed, form an effective matrix. The characteristics of this effective matrix is calculated using a theory formulated by Ledbetter and Datta. The effective matrix is then considered to be reinforced with fibers lying in one plane but randomly oriented in that plane. The effect of the 2-dimensionally random orientation of the fibers on the elastic moduli of the composites is determined in two steps. First the composite cylinders model by Hashin and Rosen for an aligned fiber system is employed, and then a geometric averaging procedure suggested by Christensen and Waals is performed. Using this model, the Young's and shear moduli were calculated for three samples with different aluminum matrices and volume fractions of particles (9, 13, and 17%) but the same fiber content (6%). The same elastic moduli were also determined using ultrasonic velocity measurements. The agreement between calculated and measured elastic moduli is found to be very good. Also, the elastic anisotropics between directions of the fiber rich plane and that normal to the plane could be predicted by the model.  相似文献   

2.
A model has been developed to predict the elastic moduli in composites reinforced with both particles and fibers. In the model the matrix material and the particles, which are assumed to be homogeneously distributed, form an effective matrix. The characteristics of this effective matrix is calculated using a theory formulated by Ledbetter and Datta. The effective matrix is then considered to be reinforced with fibers lying in one plane but randomly oriented in that plane. The effect of the 2-dimensionally random orientation of the fibers on the elastic moduli of the composites is determined in two steps. First the composite cylinders model by Hashin and Rosen for an aligned fiber system is employed, and then a geometric averaging procedure suggested by Christensen and Waals is performed. Using this model, the Young's and shear moduli were calculated for three samples with different aluminum matrices and volume fractions of particles (9, 13, and 17%) but the same fiber content (6%). The same elastic moduli were also determined using ultrasonic velocity measurements. The agreement between calculated and measured elastic moduli is found to be very good. Also, the elastic anisotropies between directions of the fiber rich plane and that normal to the plane could be predicted by the model.This article is dedicated to Professor Dr. Paul Höller on the occasion of his 65th birthday.  相似文献   

3.
J. W. Ju  K. Yanase 《Acta Mechanica》2010,215(1-4):135-153
A micromechanical framework is proposed to predict effective elastic moduli of particle-reinforced composites. First, the interacting eigenstrain is derived by making use of the exterior-point Eshelby tensor and the equivalence principle associated with the pairwise particle interactions. Then, the near-field particle interactions are accounted for in the effective elastic moduli of spherical-particle-reinforced composites. On the foundation of the proposed interacting solution, the consistent versus simplified micromechanical field equations are systematically presented and discussed. Specifically, the focus is upon the effective elastic moduli of two-phase composites containing randomly distributed isotropic spherical particles. To demonstrate the predictive capability of the proposed micromechanical framework, comparisons between the theoretical predictions and the available experimental data on effective elastic moduli are rendered. In contrast to higher-order formulations in the literature, the proposed micromechanical formulation can accommodate the anisotropy of reinforcing particles and can be readily extended to multi-phase composites.  相似文献   

4.
The present work aims to investigate the influences of thermal residual stresses and material properties on the thermomechanical deformation behavior of Al–B4C composites. Boron carbide-reinforced aluminum matrix composites having 4, 8, and 12 vol% boron carbide were fabricated using squeeze liquid stir casting method for experimental characterization of their microstructure, effective elastic moduli and effective CTEs at room temperature as well as elevated temperatures. Next, the thermomechanical behavior of fabricated composites was investigated using finite element modeling. The effects of thermal residual stresses on the effective material properties were examined by simulating the cooling process of MMCs from processing temperature to room temperature. The effective elastic moduli and the effective CTEs were predicted considering linear elastic as well as elastoplastic deformation of aluminum matrix, and the results obtained were compared with the experimental values. The effects of voids on effective material behavior are studied by simulating the void growth and nucleation using Gurson–Tvergaard–Needleman model.  相似文献   

5.
The coefficient of thermal expansion (CTE) of Al-based metal matrix composites containing 70 vol.% SiC particles (AlSiC) has been measured based on the length change from room temperature (RT) to 500 °C. In the present work, the instantaneous CTE(T) of AlSiC is studied by thermo-elastic models and micromechanical simulation using finite element analysis in order to explain abnormalities observed experimentally. The CTE(T) is predicted according to analytical thermo-elastic models of Kerner, Schapery and Turner. The CTE(T) is modelled for heating and cooling cycles from 20 °C to 500 °C considering the effects of microscopic voids and phase connectivity. The finite element analysis is based on a two-dimensional unit cell model comparing between generalized plane strain and plane stress formulations. The thermal expansion behaviour is strongly influenced by the presence of voids and confirms qualitatively that they cause the experimentally observed decrease of the CTE(T) above 250 °C.  相似文献   

6.
The frequency-dependent dynamic effective properties of the particle-reinforced composites with the viscoelastic matrix are studied. Several equations to predict the effective wavenumber of the coherent plane waves propagating through particle-reinforced composites are discussed and the equation given by Gubernatis, J.E., [‘Effects of microstructure on speed and attenuation of elastic waves in porous materials’, Wave Motion, 6, 1984, 579–589] based on the independent scattering approximation is used in this paper. The effective phase velocity, the effective attenuation and the effective elastic moduli are evaluated. Numerical calculations are carried out for two kinds of composites, namely, Lead-Epoxy and Glass-Epoxy and the numerical results show that the frequency-dependent dynamic effective properties are related to both the multiple scattering effects among the distributed particles and the viscous dissipative effects of the viscoelastic matrix. However, these effects in the composites with distributed heavy particles (lead) and light particles (glass) are of evidently different features.  相似文献   

7.
P. J. Lin  J. W. Ju 《Acta Mechanica》2009,208(1-2):11-26
A micromechanical analytical framework is presented to predict effective elastic moduli of three-phase composites containing many randomly dispersed and pairwisely interacting spherical particles. Specifically, the two inhomogeneity phases feature distinct elastic properties. A higher-order structure is proposed based on the probabilistic spatial distribution of spherical particles, the pairwise particle interactions, and the ensemble-volume homogenization method. Two non-equivalent formulations are considered in detail to derive effective elastic moduli with heterogeneous inclusions. As a special case, the effective shear modulus for an incompressible matrix containing randomly dispersed and identical rigid spheres is derived. It is demonstrated that a significant improvement in the singular problem and accuracy is achieved by employing the proposed methodology. Comparisons among our theoretical predictions, available experimental data, and other analytical predictions are rendered. Moreover, numerical examples are implemented to illustrate the potential of the present method.  相似文献   

8.
This paper presents a computational procedure to calculate the contribution of the irregularly shaped defects into the effective moduli of two-dimensional elastic solids. In this procedure, the hole compliance tensor of an individual defect is constructed using the numerical conformal mapping (NCM) technique. The effective elastic properties of a porous solid are predicted in the non-interacting approximation using the elastic potential-based approach.  相似文献   

9.
Based on the Mori–Tanaka method, a micro-mechanics model is developed to study the effective elastic properties of composites reinforced by regularly distributed particles. The spatial distribution of particles is supposed to be cube symmetric in the three-dimensional space, and the corresponding finite element method (FEM) computation has been performed through a unit cell model. Additionally, particle interaction and distribution are simultaneously taken into account by using the strain Green’s function, and the specified strain Green’s function is determined by utilizing the necessary conditions of geometric symmetry. In order to analyze particle size effect on the effective properties of composites, the Double-inclusion configuration and related theory are introduced to describe the role of the interphase between the matrix and particles. Finally, the overall elastic properties of the composite with regularly distributed particles are described by three independent elastic constants expressed in the explicit form, and the accuracy of the developed model is verified by comparing with FEM results.  相似文献   

10.
In this paper, an equivalent continuum-structural mechanics approach is used to characterize the mechanical behaviour of nanostructured graphene. The in-plane elastic deformation of armchair graphene sheets is simulated by using finite element modelling. The model is based on the assumption that force interaction among carbon atoms can be modelled by load-carrying beams in a representative two-dimensional honeycomb lattice structure. The elastic properties of beam elements are determined by equating the energies of the molecular structure and the continuum beam model subjected to small strain deformation. Then an equivalent continuum technique is adopted to estimate effective elastic moduli from which elastic constants are extracted. A comparison of elastic constants obtained from current modelling concur with results reported in literature. With the multifunctional properties of graphene sheets as manifested in a broad range of industrial applications, determination of their elastic moduli will facilitate a better design of the corresponding materials at macroscopic level.  相似文献   

11.
In this paper, a strain energy model is developed for the prediction of the effective coefficient of thermal expansion (CTE) of composite materials. This model is based on the relationship established between the strain energy of the microstructure and that of the homogenized equivalent model under specific thermo-elastic boundary conditions. Expressions in closed-form are derived for the effective CTE in terms of the strain energy and effective elastic tensor. Different kinds of composites are tested to validate the model. Representative unit cells with specific boundary conditions are used to evaluate effective CTEs that are compared with available results obtained numerically and experimentally.  相似文献   

12.
In the present study, the consistent effective elastic properties of straight, circular carbon nanotube epoxy composites are derived using the micromechanics theory. The CNT composites are known to provide high stiffness and elastic properties when the shape of the fibers is cylindrical and straight. Accordingly, in the present work, the effective elastic moduli of composite are newly obtained for straight, circular CNTs aligned in the specified direction as well as distributed randomly in the matrix. In this direction, novel analytical expressions are proposed for four cases of fiber property. First, aligned, and straight CNTs are considered with transverse isotropy in fiber coordinates, and the composite properties are also transversely isotropic in global coordinates. The short comings in the earlier developments are effectively addressed by deriving the consistent form of the strain tensor and the stiffness tensor of the CNT nanocomposite. Subsequently, effective relations for composites reinforced with aligned, straight CNTs but fibers isotropic in local coordinates are newly developed under hydrostatic loading. The effect of the unsymmetric Eshelby tensor for cylindrical fibers on the overall properties of the nanocomposite is included by deriving the strain concentration tensors. Next, the random distribution of CNT fibers in the matrix is studied with fibers being transversely isotropic as well as isotropic when CNT nanocomposites are subjected to uniform loading. The corresponding relations for the effective elastic properties are newly derived. The modeling technique is validated with results reported, and the variations in the effective properties for different CNT volume fractions are presented.  相似文献   

13.
The thermal expansion behavior of two aluminum alloys (Al-4%Cu and Al-12%Si) reinforced with alumina planar random short fibers has been studied, both experimentally and theoretically. The metal matrix composites (MMCs) were manufactured by pressure infiltration of molten metal into short fiber preforms with a planar random distribution of fibers. Dilatometric testing was used to investigate the influence of fiber volume fraction and architecture, and the effects of thermal cycling between 25 °C to 560 °C. Thermal expansion measurements showed that, by increasing the fiber content in the composites, both the thermal strains and the effective coefficient of thermal expansion (CTE) were reduced in the whole temperature range. Furthermore, the thermal strains of MMCs increased almost linearly up to a critical temperature, T cr, where the metallic matrix began to yield macroscopically due to internal thermal stresses. For temperatures higher than T cr the thermal strains of MMCs showed a marked hysteresis during heating/cooling cycles due to the elasto-plastic response of the metallic matrix. In this temperature range, the thermal expansion curves deviated appreciably from linearity and the planar (in the plane of fibers) and transverse (normal to the plane of fibers) responses were very different: while the planar CTE was strongly reduced, the transverse CTE increased sharply with temperature, being even larger than the CTE of the unreinforced alloy. Thermal cycling produced a net dimensional change of composites during the first 2-3 cycles but, on the subsequent cycles, the permanent deformation disappeared almost completely and the successive thermal expansion curves were identical. Experimental results were compared to the theoretical predictions of an analytical model based on the Eshelby's equivalent inclusion method, and an excellent agreement was obtained.  相似文献   

14.
Yu-Fu Ko  J. W. Ju 《Acta Mechanica》2012,223(11):2437-2458
A higher-order structure for three-phase composites containing randomly located yet unidirectionally aligned circular fibers is proposed to predict effective transverse elastic moduli based on the probabilistic spatial distribution of circular fibers, the pairwise fiber interactions, and the ensemble-area homogenization method. Specifically, the two inhomogeneity phases feature distinct elastic properties and sizes. In the special event, two-phase composites with same elastic properties and sizes of fibers are studied. Two non-equivalent formulations are considered in detail to derive effective transverse elastic moduli of two-phase composites leading to new higher-order bounds. Furthermore, the effective transverse elastic moduli for an incompressible matrix containing randomly located and identical circular rigid fibers and voids are derived. It is demonstrated that significant improvements in the singular problems and accuracy are achieved by the proposed methodology. Numerical examples and comparisons among our theoretical predictions, available experimental data, and other analytical predictions are rendered to illustrate the potential of the present method.  相似文献   

15.
Hill [J. Mech. Phys. Solids 11 (1963) 357, 12 (1964) 199] discovered that, regardless of its microstructure, a linearly elastic composite of two isotropic phases with identical shear moduli is isotropic and has the effective shear modulus equal to the phase ones. The present work generalizes this result to anisotropic phase composites by showing and exploiting the fact that uniform strain and stress fields exist in every composite whose phases have certain common elastic moduli. Precisely, a coordinate-free condition is given to characterize this specific class of elastic composites; an efficient algebraic method is elaborated to find the uniform strain and stress fields of such a composite and to obtain the structure of the effective elastic moduli in terms of the phase ones; sufficient microstructure-independent conditions are deduced for the orthogonal group symmetry of the effective elastic moduli. These results are applied to elastic composites consisting of isotropic, transversely isotropic and orthotropic phases.  相似文献   

16.
Summary Based on the general micromechanical framework proposed in a companion paper, effective elastic moduli of two-phase composites containing randomly dispersedspherical inhomogeneities are investigated in this paper. At variance with existing micromechanical pairwise interaction models (accurate up to the second-order in particle volume fraction ), the proposed approximate, probabilistic pairwise particle interaction formulationcoupled with the general ensemble-volume averaged field equations leads to a novel, higher-order (in ), and accurate method for the prediction of effective elastic moduli of two-phase composites containing randomly located spherical particles. The relevant ensemble integrals in the proposed formulation are absolutely convergent due to a renormalization procedure employed in a companion paper. In accordance with the analogy between the effective shear modulus of an incompressible elastic composite with randomly dispersed rigid spheres and the effective shear viscosity of a colloidal dispersion with randomly dispersed rigid spheres (at high shear rates), the proposed ensemble-micromechanical approach is extended to predict effective shear viscosities of colloidal dispersions at the high-shear limit. Comparisons with experimental data, classical variational bounds, improved three-point bounds, the second-order particle interaction model, and other micromechanical models are also presented. It is observed that significant improvement in predictive capability for two-phase composites with randomly dispersed spheres can be achieved by using the proposed method.  相似文献   

17.
A micro-mechanics model for continuous fibrous composites was developed in order to determine the effective moduli of composites based on the material properties of their constituents, i.e. fiber and matrix materials. The model can calculate elastic or nonelastic effective moduli of composites depending on their constituents' behavior. Furthermore, micro-mechanical damage can also be considered in the present model to determine effective moduli. Predicted effective moduli from the present model compared very well with experimental data available elsewhere for both undamaged and damaged composites.  相似文献   

18.
考虑界面影响的混凝土弹性模量的数值预测   总被引:9,自引:1,他引:8  
提出了一种考虑界面过渡层影响的混凝土弹性模量的数值预测方法。将球形骨料与包裹它的界面过渡层作为二相复合球结构的等效颗粒,由广义自洽方法计算不同粒径骨料与界面过渡层组成复合球的有效模量。然后由等效颗粒生成的随机骨料模型建立体积表征单元,施加均匀位移边界条件,通过数值方法计算该体积表征单元中的应力和应变场,由细观力学数值均匀化方法预测体积表征单元的有效弹性模量。计算结果表明:对于不同骨料含量的混凝土,有效弹性模量的预测值与试验值非常接近,界面过渡层的厚度对混凝土的整体弹性性质有较大影响。  相似文献   

19.
Yu-Fu Ko  J. W. Ju 《Acta Mechanica》2013,224(1):157-182
A higher-order multi-scale structure for three-phase hybrid fiber-reinforced composites containing randomly located yet unidirectionally aligned circular fibers is proposed to predict effective transverse elastic moduli based on the probabilistic spatial distribution of circular fibers, the pairwise fiber interactions, and the ensemble-area homogenization method. Specifically, the two inhomogeneity phases feature distinct elastic properties and sizes. Two non-equivalent formulations are considered in detail to derive effective transverse elastic moduli of three-phase composites leading to new higher-order bounds. Numerical examples and comparisons among our theoretical predictions and other analytical predictions are rendered to illustrate the potential capability of the present method.  相似文献   

20.
The boundary strip method (BSM) is applied for evaluation of the transverse mechanical properties of fibrous composites with random and periodical fiber distributions. This special semi numerical method helps find the link between the microscopic behavior of the composite material and its macroscopic response in a rather detailed manner, enabling definition of stress and strain magnitudes at each point of the cross section. Here, specifically statistical model based on the boundary strip method, is used for assessment of the transverse effective moduli of fibrous composites. Random fiber distributions are compared with periodic fiber distributions having square or hexagonal array arrangements. Those are the common models used nowadays and modeled by the finite element or the boundary element. A comparison with the bounds of the polarization extremum principles is conducted too. The influence of the randomly distributed fibers on the transverse effective moduli is investigated and a good correlation is found between the results of the present model and the lower bound of the polarization extremum principles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号