共查询到19条相似文献,搜索用时 93 毫秒
1.
鼻咽癌CT图像分割是鼻咽癌诊断和治疗的先行任务,然而,由于鼻咽癌细胞的外形多样、灰度不均匀、边界模糊、病变形状复杂等因素使得分割难以准确。针对这一问题,提出了一种基于三维深度卷积神经网络的鼻咽癌CT图像分割方法,三维深度卷积神经网络框架的前5层采用卷积核为3~3的普通卷积,中间6层采用空洞率为2的膨胀卷积,后6层采用空洞率为4的膨胀卷积,每2个卷积层之间有一个残差连接,最后利用Softmax函数对每个像素点进行分类。膨胀卷积有助于得到精确的密集预测和沿物体边界的精细分割图,残差连接使深度卷积神经网络中的信息传播平滑,并能提高训练速度。实验结果表明,在鼻咽癌CT图像分割中该方法与其他主流方法相比有更好的性能。 相似文献
2.
诊断直肠癌时,如果能够从CT图像中自动准确分割出直肠肿瘤区域,将有助于医生进行更准确和快速的诊断。针对直肠肿瘤分割问题,提出基于U-Net改进模型的直肠肿瘤自动分割方法。首先在U-Net模型的每级编码器中嵌入子编码模块提升模型特征提取能力;其次通过对比不同优化器的优化性能,获得最适合的优化器用于训练模型;最后对训练集进行数据扩充使模型得到更充分的训练,从而提高分割性能。与U-Net、Y-Net和FocusNetAlpha三种网络模型进行的对比实验表明:所提改进模型得到的分割区域与真实肿瘤区域更接近,对小目标的分割性能更突出,该模型的查准率、查全率和Dice系数三个评价指标都优于对比的模型,能有效分割直肠肿瘤区域。 相似文献
3.
乳腺癌是发生在乳腺腺上皮组织的恶性肿瘤,防治的关键在于早发现、早诊断.乳腺肿瘤在超声图像中一般表现为低回声区,因此乳腺超声图像有斑点噪声多、边缘比较模糊、灰度不均匀等特性,造成了乳腺肿瘤分割难度增大的情况.针对以上情况,为了提高乳腺肿瘤超声图像分割的精度和效率,提出了一种基于优化U-Net网络的乳腺肿瘤区域分割新方法.... 相似文献
4.
近年来随着深度学习技术的快速发展,卷积神经网络(CNN)成为语义分割的重要支撑框架,被广泛运用于多种目标检测与分割的任务当中。在医学图像分割任务中,U-Net网络以其优异的分割性能、可拓展性的网络结构等特点成为该领域研究的热点。如今有众多学者从网络的结构等方面对U-Net进行改进以优化网络性能、提升分割准确度。研究通过对相关文献的分析,首先介绍了基于U-Net的经典改进模型;然后阐述了六大U-Net改进机制:注意力机制、inception模块、残差结构、空洞机制、密集连接结构以及集成网络结构;随后介绍了医学图像分割常用评价指标和非结构化改进方案,这些非结构化改进方法包括数据增强、优化器、激活函数和损失函数四个方面;之后列举并分析了在肺结节、视网膜血管、皮肤病和颅内肿瘤新冠肺炎四大医学图像分割领域的改进模型;最后对U-Net网络的未来发展进行展望,为相关研究提供思路。 相似文献
5.
图像分割是遥感解译的重要基础环节,高分辨率遥感图像中包含复杂的地物目标信息,传统分割方法应用受到极大限制,以深度卷积神经网络为代表的分割方法在诸多领域取得了突破进展。针对高分辨遥感图像分割问题,提出一种基于U-Net改进的深度卷积神经网络,实现了端到端的像素级语义分割。对原始数据集做了扩充,对每一类地物目标训练一个二分类模型,随后将各预测子图组合生成最终语义分割图像。采用了集成学习策略来提高分割精度,在“CCF卫星影像的AI分类与识别竞赛”数据集上取得了94%的训练准确率和90%的测试准确率。实验结果表明,该网络在拥有较高分割准确率的同时还具有良好的泛化能力,能够用于实际工程。 相似文献
6.
视网膜血管的形态和结构一直是高血压、冠心病、糖尿病等疾病的重要诊断指标之一,其检测和分割具有十分重要的意义。为了解决视网膜血管分割中,血管末梢缺失和细小血管断裂的问题,提出了一种基于U-Net改进模型的多尺度分割方法,通过在编码阶段和解码阶段之间采用增加卷积块的方式来保持对不同尺度下的特征提取,同时对增加的卷积块采用密集连接的方式解决由于网络加深带来的浅层特征缺失和梯度消失问题,从而增强模型的特征提取能力并提高分割性能。此外,采用Dice损失函数解决数据集中正负样本不均衡的问题。实验采用CHASE_DB1和DRIVE两个数据集进行训练和测试,通过与U-net、Residual U-net、Ladder-Net以及R2U-Net的对比表明,由于保留了多尺度的细节信息,该方法取得了更好的分割效果。实验证明,该方法能够有效提取健康视网膜图像和病变视网膜图像中的血管网络,能够较好地分割细小血管。 相似文献
7.
脑卒中病灶自动分割可以为临床决策过程提供有价值的支持,而由于病灶大小、形状和位置的多样性,这项任务具有一定的挑战性.以往的研究未能很好地捕获有助于处理这种多样性的全局上下文信息.针对小样本情境下的缺血性脑卒中病灶分割这一问题,提出了在传统U-Net的基础上融合了残差模块和non-local块的端到端神经网络,用于从多模... 相似文献
8.
针对传统的卷积神经网络(CNN)不能直接处理点云数据,需先将点云数据转换为多视图或者体素化网格,导致过程复杂且点云识别精度低的问题,提出一种新型的点云分类与分割网络Linked-Spider CNN。首先,在Spider CNN基础上通过增加Spider卷积层数以获取点云深层次特征;其次,引入残差网络的思想在每层Spider卷积增加短连接构成残差块;然后,将每层残差块的输出特征进行拼接融合形成点云特征;最后,使用三层全连接层对点云特征进行分类或者利用多层卷积层对点云特征进行分割。在ModelNet40和ShapeNet Parts数据集上将所提网络与PointNet、PointNet++和Spider CNN等网络进行对比实验,实验结果表明,所提网络可以提高点云的分类精度和分割效果,说明该网络具有更快的收敛速度和更强的鲁棒性。 相似文献
9.
液滴图像的精确分割是高精度接触角测量的重要环节,针对在液滴分割过程中存在的目标不准确、轮廓不完整以及固-液-汽3项交点和边界细节效果不佳的问题,文中提出了一种适用于液滴分割的神经网络模型.该模型以U-Net网络为基础,在其输入处加入1×1卷积层汇总图像特征,避免从初始图像中丢失信息;并采用Resnet18结构作为U-N... 相似文献
10.
深度卷积神经网络能够解决复杂的计算机视觉问题,被广泛应用于图像识别任务中。在基于深度卷积神经网络的图像识别过程中,增加网络的深度和宽度能够产生丰富的特征信息,使用多尺度分割方法能够有效减少冗余的特征信息。然而,增加网络的深度和进行多尺度分割都会影响识别速度。如何在保证精度的同时提高识别速度,成为设计高效网络的关键问题。通过增加网络宽度的方法对ResNet残差网络进行改进,在保证精度的基础上提升识别速度。使用ResNet-D中的残差结构并减少网络长度,得到长度只有7层的残差网络,同时对HS-ResNet中的多尺度分割方法进行优化,只保留最后一次连接合并操作,得到图像识别残差网络SSRNet。在CIFAR 10和CIFAR 100数据集上的实验结果显示,SSRNet速度最高较ResNet网络提升7倍多,同时错误率最高下降8.81%,表明缩短网络长度可大幅加快图像识别速度,同时结合多尺度分割方法能够有效提升识别精度。 相似文献
11.
针对传统卷积神经网络在作物病害叶片图像中分割精度低的问题,提出一种基于级联卷积神经网络(Cascade Convolutional Neural Network,CCNN)的作物病害叶片图像分割方法。该网络由区域病斑检测网络和区域病斑分割网络组成。基于传统VGG16模型构建区域病斑检测网络(Regional Detection Network,RD-net),利用全局池化层代替全连接层,由此减少模型参数,实现叶片病斑区域精确定位。基于Encoder-Decoder模型结构建立区域分割网络(Regional Segmentation Network,RS-net),并利用多尺度卷积核提高原始卷积核的局部感受野,对病斑区域精确分割。在不同环境下的病害叶片图像上进行分割实验,分割精度为87.04%、召回率为78.31%、综合评价指标值为88.22%、单幅图像分割速度为0.23?s。实验结果表明该方法能够满足不同环境下的作物病害叶片图像分割需求,可为进一步的作物病害识别方法研究提供参考。 相似文献
12.
模糊B样条基神经网络磁共振图像分割方法 总被引:1,自引:0,他引:1
针对磁共振图像分割的特点,提出了一种基于模糊B样条基神经网络的磁共振图像分割方法。该方法采用B样条基函数作为模糊隶属函数,利用神经网络实现模糊推理,并采用反向误差传播算法对网络进行训练。实验结果表明,这种基于模糊B样条基神经网络的磁共振图像分割方法与普通神经网络分割方法相比,具有更高的分割精度和更快的训练收敛速度。 相似文献
13.
14.
本文针对三维核磁共振图像的自动分割问题,结合分水岭算法与SharonE等人提出的SWA分割算法,提出一种基于区域相关性的快速分割算法。该算法的优点是减少了计算复杂核磁共振图像及具有复杂纹理的单张切片图像进行准确的分割 。 相似文献
15.
针对海陆语义分割中陆地、码头形状多样,背景目标复杂等情况造成的像素分类错误、边界分割模糊等问题,提出了一种新的基于深度卷积神经网络的遥感图像海陆语义分割方法。该方法以端对端的训练方式实现了对目标的逐像素分类,为了解决海陆分割中像素分类错误,设计以不同尺度图像为输入的三个并行的编码结构,通过融合不同尺度的特征图,丰富特征代表算子的语义信息,增大像素分类准确率。为了解决海陆分割中边界分割模糊,通过设计能够融合编码结构中低层精细位置信息的解码结构,对特征图进行更加精确的上采样,恢复像素的密集位置信息,提高海陆分割准确度。为有效验证所提网络框架的优势,构建了海陆分割数据集HRSC2016-SL进行算法性能比较。与最新的语义分割算法相比,所提算法取得了更好的分割结果。 相似文献
16.
为了解决计算机断层扫描(computed tomography,CT)影像中肝脏和肝癌的准确分割问题,提出了基于三维全卷积网络的肝脏分割算法和肝癌分割算法。肝脏分割算法和肝癌分割算法都采用Vnet网络进行分割。在肝脏分割算法中,采用了形态学方法进行后处理,提高了肝脏分割准确率。在肝癌分割算法中,采用了组合损失函数训练Vnet网络,使得Vnet网络更好地收敛,并加入后处理提高了肝癌分割准确率。为了验证算法的性能,采用MICCAI 2017 Liver Tumor Segmentation Challenge(LiTS)数据集进行了肝脏分割和肝癌分割的5折交叉验证实验。肝脏分割算法在测试集的平均分割准确率为0.9510,高于Unet网络和3D Unet网络;肝癌分割算法的平均分割准确率为0.712。实验结果表明,肝脏分割算法可以准确地对肝脏进行分割,肝癌分割算法也达到了较高的准确率。 相似文献
17.
18.
为解决硬件平台资源受限条件下精准实现脑肿瘤区域分割的需求,提出一种基于ShuffleNet的多尺度高效脑肿瘤分割网络。首先以ShuffleNet为基础构建深层特征提取网络,并加入多路平行卷积层和混合感受野增强网络的多尺度信息提取能力;其次,使用深度可分离卷积降低网络的参数量;最后提出一种加权混合损失函数缓解了数据类别不平衡对脑肿瘤分割的影响,提高了网络分割的稳定性。实验选取BraTS2019数据集进行训练和验证,并在BraTS2021临床病人数据集上进行临床测试。结果表明,所提的深层轻量级网络大幅度降低了参数量和计算量,同时具有较高的分割精度,且在增强肿瘤区域的分割问题上有更好的表现。 相似文献
19.
针对腹部复杂的内部结构、各组织之间存在相互浸润,使得腹部磁共振(Magnetic resonance, MR)图像存在大量弱边缘的问题,以及使用传统水平集(Level set)方法对肝脏进行分割时易在弱边缘处产生泄露,采取阈值分割等算法进行预处理以获取更好的分割效果,并使用一种改进的水平集方法分割提取三维腹部MR图像中的肝脏。使用阈值分割进行粗分割可以有效减少干扰,将粗分割的结果进行亮度映射,增强边缘信息,然后将预分割的结果作为初始水平集,使用改进的水平集方法对其进行进一步分割。实验证明多种算法的有效结合能够改善传统水平集分割方法在弱边缘处过度演化的问题,获得较为理想的分割效果,拓展了水平集方法的应用。 相似文献