首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
六足机器人随着任务的复杂程度不断提高,自由度也不断增多,使其控制结构也越来越复杂,给工程实现带来很大的困难.本文以中枢模式发生器(CPG)原理为基础,IPC+UMAC多轴运动控制器为核心,采用分级分布式控制结构设计六足机器人控制系统.控制系统包括6个CPG单元,每个CPG单元的输出信号控制机器人单腿的三个关节.通过CP...  相似文献   

2.
张秀丽  王琪  黄森威  江磊 《机器人》2022,44(6):682-693+707
针对具有2自由度主动脊柱关节的仿猎豹四足机器人,基于任务分解思想和生物神经系统机理,提出多模型融合的控制方法。该方法以弹簧负载倒立摆模型实现单腿跳跃控制,通过中枢模式发生器(CPG)实现4条腿之间以及脊柱―腿之间的协调控制,利用虚拟模型控制实现机器人与环境交互,采用基于CPG输出的有限状态机来融合3个控制模型,构建仿猎豹四足机器人的多模型分层运动控制器。参考猎豹脊柱运动特征,设计了机器人脊柱关节运动模式,给出脊柱与腿的协调控制策略。最后,在Webots仿真环境中搭建了仿猎豹四足机器人虚拟样机,实现了不同步态下的脊柱―腿的协调控制、在崎岖地形上稳定奔跑,以及平滑的对角―疾驰―对角步态转换,仿真结果验证了所提出的多模型融合的四足机器人运动控制方法的有效性。  相似文献   

3.
针对节律运动突变碰撞力大和柔顺性低的问题,改进基于Hopf振荡器的中枢模式发生器模型,提出一种节律柔顺行走控制方法。分析Hopf振荡器输出信号与关节运动之间的关系,整合膝关节变量,改变神经元之间的作用关系,实现对称步态和非对称步态行走;分析节律运动碰撞力突变对四足机器人行走产生的负面影响,提出基于碰撞力大小和四足机器人身体姿态的柔顺性评估方法;通过连续调整碰撞阶段大腿的摆动幅度,增大摆动周期,减小碰撞阶段的关节运动速度,形成机器人本体与地面之间的缓冲,实现节律柔顺行走。四足机器人慢走步态和对角小跑步态仿真实验验证了该控制方法的有效性。  相似文献   

4.
并联腿结构的四足机器人具有承载能力强、刚度大、运动精度高的优点,但控制复杂。为更好地控制,提出了一种串联结构等效方法对并联腿进行了分析,结合中枢模式发生器(CPG)对等效的髋、膝关节进行控制,从而实现四足机器人不同步态,并利用ADAMS与MATLAB/SIMULINK软件搭建了四足机器人的虚拟样机与控制系统。仿真实验结果表明,串联等效分析方法能够应用于并联腿结构,CPG可实现四足机器人的Walk与Trot步态,验证了该方法的可行性与有效性。  相似文献   

5.
中枢模式发生器(CPG)在六足机器人的运动步态控制中起着至关重要的作用。为了研究六足机器人的运动控制方法,首先基于仿生学原理设计了六足机器人的机械结构,并在虚拟样机软件ADAMS中搭建其三维模型;其次选择Hopf振荡器作为CPG单元,并改进了振荡器模型;然后设计了六足机器人的CPG网络拓扑结构,包含单腿关节映射函数方案和腿间CPG环形耦合网络方案,并对其进行了改进;最后通过ADAMS和MATLAB联合仿真实验,验证了所设计六足机器人的运动稳定性和CPG控制方案的可行性与有效性。仿真结果表明,该方法能够满足六足机器人不同运动步态的控制需求,对六足机器人的运动控制具有一定的实际应用价值。  相似文献   

6.
针对动物脊椎协调运动分析以及不同速度下的步态参数分析困难等问题,为了更好的控制输入速度,产生相适应的步态模式,设计三层递阶式网络步态规范方法。分析trot步态下速度与角频率ω的关系;分析bound步态下速度与髋关节幅值A_h之间的关系;通过Webots仿真分别验证了trot和bound步态下各自速度与步态参数之间映射关系的合理性。通过误差分析,角频率误差在0.25 rad/s左右,髋关节幅值误差在0.02 rad左右;在bound步态下,通过加入脊椎,对比仿真分析得出,脊椎运动可加快机器人速度,同时改变肢体和脊椎幅值相比于只改变肢体幅值更合理。  相似文献   

7.
为了模仿动物卓越的运动能力和环境适应能力,提出了六足仿生机器人的轨迹跟踪控制方法。首先建立了机器人的运动学模型,接着通过转向参数将机器人的速度和角速度与中枢模式发生器(CPG)参数结合起来,设计了转换函数。然后通过转换函数将模型预测控制器和CPG网络结合起来,提出了基于CPG的模型预测控制器(MPC-CPG),并证明了其稳定性。最后对机器人跟踪圆周轨迹和直线轨迹进行了仿真和实验。实验表明,在有初始误差的条件下,机器人在MPC-CPG控制器的作用下能够快速地消除位置误差和航向角误差,跟踪上参考轨迹。轨迹跟踪的位置误差始终保持在-0.1~0.1 m,航向角误差保持在-27?~20?。在MPC-CPG控制器的作用下,机器人不仅具有较高的轨迹跟踪精度,同时还表现出良好的运动平滑性和协调性,进一步验证了所提出的MPC-CPG控制器的有效性。  相似文献   

8.
魏扬帆  周川  郭健  许鹏 《控制工程》2021,28(6):1055-1060
针对四足机器人在坡面上的行走稳定性问题,提出了基于带反馈项的中枢模式发生器(CPG)的步态控制策略.根据零力矩点(ZMP)判据分析四足机器人在斜坡上的运动稳定性,引入参数在线调节机制适应外界环境变化.通过差分进化算法去调节CPG网络模型中的反馈项参数,减小零力矩点在水平面投影与支撑线的距离,从而增大四足机器人在斜坡上的...  相似文献   

9.
张秀丽  梁艳 《机器人》2016,(4):458-466
受婴儿爬行时独特的躯体形态的启发,设计了具有柔性脊柱和弹性膝关节的欠自由度四足爬行机器人BabyBot,其脊柱为变截面通体柔顺结构,膝关节为无自由度可变形被动关节.利用伪刚体法对柔性脊柱和弹性膝关节的结构参数进行设计,采用中枢模式发生器(CPG)运动控制模型生成对角爬行步态轨迹,柔顺机构与仿生控制有机结合形成了BabyBot机器人"以膝着地、腰髋耦合"的仿婴儿爬行步态.对欠自由度仿婴儿机器人的机构可行性,以及柔性脊柱对机器人运动性能的影响进行仿真及实验,结果表明,具有弹性膝关节的欠自由度四足机器人可以实现平稳的爬行运动,变截面柔性脊柱能够减小机器人行走时躯干在横滚及偏转方向的姿态波动程度,提高了机器人运动的协调性和轨迹准确性,并揭示出婴儿爬行时脊柱的柔顺运动对稳定视觉的潜在作用.  相似文献   

10.
该文通过对一种四足机器人进行设计和步态规划后,利用仿真技术分析它的适应环境与承载能力。首先在四足步行机器人初始结构参数基础上,基于三维软件Pro/ENGINEER建立机器人仿真模型,并将模型导入到仿真软件中完成行走过程,以稳定性为评价指标对机器人进行优化和评价;最后在路面上进行一定量的承载和适应环境方面的分析,为智能化机器人提供一种分析方式。  相似文献   

11.
沟壑类非连续地形下的四足机器人运动控制   总被引:1,自引:0,他引:1  
针对四足机器人踏入野外沟攀或踏上非结构化下行台阶时出现的姿态失稳问题,提出模仿生物神经反射机理的抗垂直惯性力平衡控制方法,即通过检测躯干的俯仰角突变信息,触发姿态反射,通过四条腿协调运动快速调整机器人姿态,抵抗惯性力造成的瞬时失稳.本文利用一个8自由度的四足仿生机器人设计了对比实验:机器人可成功跨越1.2倍跨距的沟壑并...  相似文献   

12.
王琪  张秀丽  江磊  黄森威  姚燕安 《机器人》2022,44(3):257-266
为了探索脊柱运动对腿运动的增强机理,设计了具有2自由度铰接式躯干的仿猎豹四足奔跑机器人。对带腾空相的跳跃(bound)步态奔跑运动的力学过程进行描述,采用阻尼型弹性负载倒立摆(D-SLIP)模型建立了四足机器人动力学模型。依据猎豹的奔跑运动模式,对四足机器人脊柱关节与腿关节的耦合运动进行了轨迹规划。提出一种改进的粒子群优化(PSO)算法,解决了机器人脊柱关节驱动机构尺寸和运动轨迹控制参数之间目标互斥的嵌套优化问题。对四足机器人跳跃奔跑运动进行动力学仿真,结果表明:脊柱与腿的协调运动可以增大奔跑步幅,使机器人产生腾空相,从而提高机器人的奔跑速度。  相似文献   

13.
A parameter search for a Central Pattern Generator (CPG) for biped walking is difficult because there is no methodology to set the parameters and the search space is broad. These characteristics of the parameter search result in numerous fitness evaluations. In this paper, nonparametric estimation based Particle Swarm Optimization (NEPSO) is suggested to effectively search the parameters of CPG. The NEPSO uses a concept experience repository to store a previous position and the fitness of particles in a PSO and estimated best position to accelerate a convergence speed. The proposed method is compared with PSO variants in numerical experiments and is tested in a three dimensional dynamic simulator for bipedal walking. The NEPSO effectively finds CPG parameters that produce a gait of a biped robot. Moreover, NEPSO has a fast convergence property which reduces the evaluation of fitness in a real environment. Recommended by Editorial Board member Euntai Kim under the direction of Editor Jae-Bok Song. Jeong-Jung Kim received the B.S. degree in Electronics and Information Engineering from Chonbuk National University in 2006 and the M.S. degree in Robotics from Korea Advanced Institute of Science and Technology in 2008. He is currently working toward a Ph.D. at the Korea Advanced Institute of Science and Technology. His research interests include biologically inspired robotics and machine learning. Jun-Woo Lee received the B.S. degree in Electronics, Electrical and Communication Engineering from Pusan National University in 2007. He is currently working toward an M.S. in the Korea Advanced Institute of Science and Technology. His research interests include swarm intelligence and machine learning. Ju-Jang Lee was born in Seoul, Korea, in 1948. He received the B.S. and M.S. degrees from Seoul National University, Seoul, Korea, in 1973 and 1977, respectively, and the Ph.D. degree in Electrical Engineering from the University of Wisconsin, in 1984. From 1977 to 1978, he was a Research Engineer at the Korean Electric Research and Testing Institute, Seoul. From 1978 to 1979, he was a Design and Processing Engineer at G. T. E. Automatic Electric Company, Waukesha, WI. For a brief period in 1983, he was the Project Engineer for the Research and Development Department of the Wisconsin Electric Power Company, Milwaukee. He joined the Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, in 1984, where he is currently a Professor. In 1987, he was a Visiting Professor at the Robotics Laboratory of the Imperial College Science and Technology, London, U.K. From 1991 to 1992, he was a Visiting Scientist at the Robotics Department of Carnegie Mellon University, Pittsburgh, PA. His research interests are in the areas of intelligent control of mobile robots, service robotics for the disabled, space robotics, evolutionary computation, variable structure control, chaotic control systems, electronic control units for automobiles, and power system stabilizers. Dr. Lee is a member of the IEEE Robotics and Automation Society, the IEEE Evolutionary Computation Society, the IEEE Industrial Electronics Society, IEEK, KITE, and KISS. He is also a former President of ICROS in Korea and a Counselor of SICE in Japan. He is a Fellow of SICE and ICROS. He is an Associate Editor of IEEE Transactions on Industrial Electronics and IEEE Transactions on Industrial Informatics.  相似文献   

14.
针对生物蛇不同步态的运动特点,提出了一种基于Hopf振荡器实现的蛇形机器人的中枢模式发生器(CPG)运动控制方法.首先,利用具有非线性极限环特性的耦合的Hopf振荡器构建出能够实现蜿蜒运动和侧向蜿蜒运动两种步态的链式网络模型.然后,根据动力学仿真软件建立机器人的虚拟样机,利用模型中振荡器的输出作为蛇形机器人分布式多冗余度关节的控制信号来驱动前进,成功实现了以上两种运动方式,并讨论了CPG的模型参数与机器人前进速度的关系.最后,在实物样机上的实验进一步验证了所提出的方法在实现蛇形机器人多种步态控制方面的有效性.  相似文献   

15.
由于传统人工规划产生步态是比较僵硬,缓慢的,缺乏灵活的自组织能力,与真正生物步态存在很大差异;而生物能很好利用中枢模式发生器的自激行为产生有节律的协调运动从而适应多种复杂环境,但普通CPG控制策略又会使关节间出现抖动,影响步态的控制效果;文中提出了以生物中枢模式发生器模型为核心建立双足机器人控制系统,并对CPG的参数进行遗传算法的高效优化,提高了系统性能,消除了关节的抖动;通过MATLAB仿真验证基于GA参数优化的CPG控制机理的双足机器人节律运动控制方法是有效的,并得到了很好的控制效果。  相似文献   

16.
首先对液压四足机器人的运动特性进行了研究,选取 CPG 算法作为控制算法并建立了数学模型,用 Matlab 实现软件上的仿真,观察各髋关节的输出信号;然后借助 Matlab 工具 HDL Coder 将 Simulink 模型转换为 Verilog 硬件语言,并在硬件环境下借助 Modelsim 用 VHDL 语言进行协同仿真;最后通过输出信号的前后对比验证了算法的有效性。该方法简化了测试流程,无需采用复杂的 Test Bench 编程方法,提高了测试的完整性。  相似文献   

17.
基于静平衡的四足机器人直行与楼梯爬越步态   总被引:1,自引:0,他引:1  
为提升四足机器人的障碍爬越能力,采用稳定裕度作为四足机器人静态稳定的判据,以落足点形成的 象限边界明确了不同初始位姿机器人的迈腿可能性.基于迈腿次序将所有步态划分为24 种类型.利用运动空间需 求最小、稳定裕度最大、步态协调性最好3 个基本评价指标,对四足机器人的24 种基本步态进行了对比分析.提出 了基于投影分析法结合平面静平衡步态理论的楼梯爬越步态研究方法,并以上述3 个特性参数最佳为要求,对楼梯 爬越步态进行了系统仿真,所得结果为四足机器人的直行与楼梯爬越步态选择提供了理论依据.实验表明了所研究 方法的有效性.  相似文献   

18.
一种粗糙地形下四足仿生机器人的柔顺步态生成方法   总被引:1,自引:0,他引:1  
传统以刚体动力学为基础的四足机器人运动控制方法对地形误差敏感,无法适应粗糙复杂地形,因此提出一种基于虚拟模型的运动控制方法用于实现四足机器人在粗糙地形下的行走.建立了以足底接触力为约束的高层步行任务和底层运动控制的映射关系.采用弹簧-阻尼-质量虚拟模型对四足机器人进行建模,将四足机器人的步行任务用一系列作用于机体质心的虚拟力去表征,基于各足等效力矩平衡的原则,将笛卡儿空间的虚拟力矢量分配到各支撑足,利用雅可比矩阵把足端力矢量转换为机器人关节空间的关节转矩.针对崎岖的空间3维粗糙地形,建立了机器人躯干姿态与地形的关联参数,通过调整躯干姿态有效扩大了机器人对粗糙地形的适应程度.运动仿真结果表明,机器人可以实现粗糙地形下稳定连续的行走,足底接触力平稳、无冲击,证明了该柔顺步态生成方法的合理性和有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号