共查询到19条相似文献,搜索用时 93 毫秒
1.
基于图神经网络的推荐算法可以提取传统方法无法提取用户与商品之间的关联关系.目前此类算法大多忽略了用户和商品的评论数据中所存在的一般偏好.针对这一问题,提出了一种方法,在利用图神经网络提取关联关系的同时,利用深度学习提取评论的优势提取用户和商品的一般偏好,并进行特征融合来提升推荐效果.在四组公共数据集中进行了对比实验,使用召回率和归一化折损累计增益作为评价指标,并通过消融实验验证了方法的有效性.实验表明该方法比已有相关算法的效果更好.两种网络的特征融合对推荐效果有提升作用. 相似文献
2.
图神经网络处理非欧氏空间数据的强大能力促使越来越多的研究将其应用于推荐领域。然而,现有的基于图神经网络的推荐模型大多数仍然采用多个邻接矩阵来表示多种节点或边属性等异质信息,没有充分利用异质信息之间的交互。因此,提出一种新型的图神经网络推荐模型,把所有信息实体之间的丰富交互建模成异质图,并在异质图上使用稠密子图采样策略进行子图采样;此外,模型还加入多任务学习方法用于共同优化链接预测与推荐任务,使得模型学习到更好的节点表示,以提升推荐效果。2个公开数据集上的实验结果表明,所提模型相比基线模型,在Top-N推荐任务性能上有所提高。 相似文献
3.
现有基于图神经网络的序列推荐模型大多仅关注用户与项目交互的结构性信息,序列偏好的学习仅涉及项目交互顺序,缺乏项目自身的内容信息,并且未有效利用用户信息及挖掘项目之间更深层的语义关系。提出一种知识增强的图神经网络序列推荐模型KGGNN,引入知识图谱,并结合用户交互数据构建协同知识图谱,学习得到项目语义关联辅助信息以及用户关联辅助信息。将交互序列构建成有向序列图,利用门控图神经网络以及用户关联辅助信息学习序列中项目节点的结构性信息。通过注意力机制组合项目向量作为全局序列偏好,将最近交互的项目作为当前兴趣偏好,融合两者形成最终序列偏好,并结合项目语义关联辅助信息进行模型预测。在Amazon-Book、Last-FM、Yelp2018这3个公开数据集上的实验结果表明,辅助信息能有效提升序列推荐的准确性,该模型在命中率(HIT@K)和归一化折损累计增益(NDCG@K)2个指标上相较于GRU4Rec、NARM、SASRec等模型均有显著提升。当评估指标K值选取10时,与KGSR模型相比,其HIT@10指标在3个数据集上分别提升12.9%、4.5%、6.9%,NDCG@10指标在3个数据集上分别提升... 相似文献
4.
图神经网络(graph neural network, GNN)具有从图的领域对数据进行特征提取和表示的优势,近年来成为人工智能研究的热点,图神经网络推荐也是推荐系统研究的一个新方向。本文对GNN模型进行深入研究的基础上,分析了GNN推荐过程,并从无向单元图推荐、无向二元图推荐、无向多元图推荐3个方面详细讨论了现有GNN推荐研究取得的主要进展及不足,阐明了现有GNN推荐研究中存在的主要难点,最后提出了GNN上下文推荐、GNN跨领域推荐、GNN群组推荐、GNN推荐的可解释性等未来GNN推荐的研究方向。 相似文献
5.
基于用户行为序列的推荐系统的目的是根据上一次序列的顺序预测用户的下一次点击。目前的研究一般是根据用户行为序列中项目的转换来了解用户偏好。然而,行为序列中的其他有效信息被忽略,如用户配置文件,这会导致模型无法了解用户的特定偏好。提出了一种基于双通道异构图神经网络的用户行为序列推荐算法(DC-HetGNN),该方法通过异构图神经网络通道和异构图线图通道学习行为序列嵌入,并捕获用户的特定偏好。DC-HetGNN会根据行为序列构造包含各种类型节点的异构图,可以捕获项目、用户和序列之间的依赖关系。其次,异构图神经网络通道和异构图线图通道捕获物品复杂转换及序列之间的交互信息,并学习包含用户信息的物品嵌入。最后,考虑到用户长期和短期偏好的影响,将局部和全局序列嵌入与注意力网络相结合,得到最终的序列嵌入。在两个电商用户行为序列数据集Diginetica和Tmall上进行的实验表明,DCHetGNN与新近模型FGNN相比在指标平均倒数排名(MRR)和召回率(Recall)中平均分别提升2.08%和0.78%,与TGSRec相比在指标MRR@n和Recall@n中平均分别提升2.70%和0.49%。 相似文献
6.
针对现有的会话推荐模型难以显式地表示项目对推荐结果的影响的问题,提出一种融合项目影响力的图神经网络会话推荐模型(SR-II)。首先,提出一种新的边权重计算方法,将计算结果作为图结构中转移关系的影响力权重,并用图神经网络(GNN)的影响力图门控层提取该图的特征;其次,提出改进的捷径图连接有关联的项目,有效捕获远程依赖,丰富图结构所能表达的信息,并通过注意力机制的捷径图注意力层提取该图的特征;最后,通过结合上述两层,构建推荐模型。在Diginetica和Gowalla数据集上的实验结果中,SR-II的HR@20最高达到53.12%,MRR@20最高达到25.79%。在Diginetica数据集上,相较于同一表征空间下基于训练模型的会话推荐(CORE-trm),SR-II在HR@20上提升了1.10%,在MRR@20上提升了1.21%。在Gowalla数据集上,相较于基于会话的自注意网络推荐(SR-SAN),SR-II在HR@20上提升了1.73%;相较于基于无损边缘保留聚合和捷径图注意力的推荐(LESSR)模型,SR-II在MRR@20上提升了1.14%。实验结果表明SR-II的推荐效果优... 相似文献
7.
8.
基于会话的推荐旨在基于会话内数据,为匿名或未登录用户做出推荐.现有的研究工作通常仅以会话中单个商品作为最小单位进行建模,忽略商品在不同感受野下的表征.同时,尚未挖掘会话序列中蕴含的商品隐式主题信息.为了缓解上述问题,文中提出主题增强的多层次图神经网络会话推荐模型(Topic-Enhanced Multi-level Graph Neural Network for Session-Based Recommendation, TEMGNN).首先,设计多层次商品嵌入学习模块,拓宽商品的感受野,获取不同粒度下的商品表示.然后,结合文中提出的多层次图神经网络进行同粒度和跨粒度下的商品信息传播,捕获更丰富的商品嵌入表征.此外,提出商品主题学习模块,在不依赖任何商品属性信息的前提下,抽取商品在隐空间下的主题共性,并以显式的向量空间投影方式自动形成商品的主题表示,用于增强模型推荐性能.在3个基准数据集上的实验表明,TEMGNN的表现较优. 相似文献
9.
10.
11.
已有推荐方法主要基于用户与项目的历史交互行为,未充分运用用户及项目相关特征信息,推荐效果并不理想。知识图谱(knowledge graph,KG)增强的图神经网络(graph neural network,GNN)推荐,是以用户与项目交互行为构建的交互图为基础,引入同为图结构的知识图谱,并运用图神经网络技术进行处理,从而实现个性化推荐。深入探讨了现有知识图谱增强的图神经网络推荐研究进展。首先在对图神经网络推荐和知识图谱推荐进行探讨的基础上,从项目知识图谱和协同知识图谱视角,深入分析了当前知识图谱增强的图神经网络推荐取得的相关研究成果;然后从大规模动态知识图谱处理、用户对项目属性的偏好挖掘、知识图谱的图嵌入学习等方面,指出了已有知识图谱增强的图神经网络推荐研究存在的主要问题;最后从动态时序知识图谱增强的GNN推荐、元学习的知识图谱增强GNN推荐、多模态知识图谱增强的GNN推荐、知识图谱增强的GNN跨领域推荐等方面,展望了知识图谱增强的图神经网络推荐未来主要研究方向。 相似文献
12.
图数据是一种特殊的数据形式,由节点和边组成.在这种数据中,实体被建模为节点,节点之间可能存在边,表示实体之间的关系.通过分析和挖掘这些数据,人们可以获得很多有价值的信息.因此,对于图中各个节点来说,它也带来了隐私信息泄露的风险.为了解决这个问题,本文提出了一种基于负数据库(NDB)的图数据发布方法.该方法将图数据的结构特征转换为负数据库的编码形式,基于此设计出一种扰动图(NDB-Graph)的生成方法,由于NDB是一种保护隐私的技术,不显式存储原始数据且难以逆转.故发布的图数据能确保原始图数据的安全.此外,由于图神经网络在图数据中关系特征处理方面的高效性,被广泛应用于对图数据的各种任务处理建模,例如推荐系统,本文还提出了一种基于NDB技术的图神经网络的推荐系统,来保护每个用户的图数据隐私.基于Karate和Facebook数据集上的实验表明,与PBCN发布方法相比,本文的方法在大多数情况下表现更优秀,例如,在Facebook数据集上,度分布最小的L1误差仅为6,比同隐私等级下的PBCN方法低约2.6%,最坏情况约为1400,比同隐私等级下PBCN方法低约46.5%.在基于LightGCN的协同过滤实验中,也表明所提出的隐私保护方法具有较高的精度. 相似文献
13.
标签感知推荐算法利用标签标注数据提升推荐模型对用户偏好和项目属性的理解,受到业界的广泛关注.但是,现有方法常忽视了用户关注点、项目属性和标签含义的多样性,干扰了三者关系推断,从而影响推荐结果.因此,提出一种基于解耦图神经网络的可解释标签感知推荐算法(DETRec),解构用户、项目和标签的关注角度,并由此形成可解释的推荐依据.具体来讲, DETRec构造关系图以建模用户、项目和标签的关系;通过邻域路由机制和消息传播机制,分离结点形成属性子图,以描述不同属性下的结点关系;最终根据属性子图形成推荐依据.实现了两种DETRec实例:单图实例(DETRec-S)在单个关系图中描述全部结点关系;多图实例(DETRec-M)使用3个二分图分别描述用户-项目、项目-标签、用户-标签关系.在3个公开数据集上进行的大量实验表明, DETRec的两种实例均明显优于标签感知推荐的基准模型,也为推荐结果生成了对应的推荐依据,是有效的可解释标签感知推荐算法. 相似文献
14.
针对社会化推荐算法中存在的推荐准确率不高的问题,提出了一种多头注意力门控神经网络(MAGN)算法.具体来说,采用门控神经网络对输入的用户和用户-朋友对进行融合得到联合嵌入,利用注意力记忆网络来获取不同朋友在不同方面对用户的影响,利用多头注意力来获取在不同方面对用户影响程度偏高的几位朋友.采用门控神经网络将朋友影响和用户... 相似文献
15.
基于会话的推荐方法由于短期用户交互数据有限,与传统推荐方法相比,其性能更容易受到数据稀疏性问题的影响。为增强会话数据以缓解数据稀疏对会话推荐性能的影响,提出一种结合自监督学习的图神经网络会话推荐(Ss-GNN)模型。构建会话图并建立基于图注意力网络的会话推荐任务来获取项目级表示和会话级表示;从会话级表示的角度出发,利用用户的一般兴趣和当前兴趣来构建辅助任务获取自监督信号;利用自监督学习实现推荐任务和辅助任务之间的互信息最大化,以增强会话数据,从而提升推荐性能。在Yoochoose和Tmall两个公开数据集上进行实验,与基线模型相比,提出的模型在Yoochoose上P@20和MRR@20至少提升了0.94%和0.79%,在Tmall上P@20和MRR@20至少提升了9.61%和4.67%,证明了Ss-GNN模型的有效性。 相似文献
16.
为了解决推荐系统的冷启动和稀疏性问题, 本文提出了一种基于异质信息网络的推荐模型. 传统的推荐方法无法在知识图谱表示学习中融入隐含的路径信息, 这样使得知识推荐系统性能较为一般. 本文提出的模型在异质信息网络中设置元路径, 通过图神经网络融入到知识图谱表示学习中. 再利用注意力网络连接推荐任务和知识图谱表示任务, 其可以学习两个任务之中潜在的特征, 并且能够增强推荐系统中被推荐项和知识图谱中实体的相互作用. 最后在推荐任务中进行用户点击率预测. 模型在公开数据集Book-Crossing和通过DBLP数据集构建的图谱上进行了实验. 最后结果表明, 模型在AUC, 召回率和F1值3个指标上均比其他算法有更好的表现. 相似文献
17.
图卷积神经网络是一种针对图结构数据的深度学习模型,由于具有强大的特征提取和表示学习能力,它也成为当前推荐系统研究的热门方法.以推荐系统中的评分预测为研究对象,通过分析指出了现有的基于图卷积神经网络的推荐模型存在2个方面的不足:图卷积层仅仅利用了1阶协同信号和未考虑用户观点的差异.为此,提出一种端到端的、基于增强图卷积神经网络的协同推荐模型.它采用一种增强的图卷积层,不仅聚合了2阶协同信号而且融合用户观点的影响,从而更合理地利用协同信号学习实体节点的嵌入表示,并通过堆叠多个图卷积层对其进行精化;最后,采用了非线性的多层感知机实现评分预测.基于5种推荐数据集上的实验结果表明:新模型的预测误差相比于几种主流的推荐模型具有明显的降低. 相似文献
18.
基于图神经网络的推荐算法通过从图中获取知识生成节点的特征表示,提高了推荐结果的可解释性.然而,随着推荐系统原始数据规模的不断扩大,大量包含语义信息的文本数据没有得到有效利用.同时图神经网络在融合图中邻居信息时没有区分关键节点,使得模型难以学习到高质量的实体特征,进而导致推荐质量下降.本文将图神经网络与语义模型相结合,提出一种融合语义信息与注意力的图神经网络推荐算法.该算法基于SpanBERT语义模型处理实体相关的文本信息,生成包含语义信息的特征嵌入,并将注意力机制引入到基于用户社交关系以及用户-项目交互的影响传播融合过程中,从而实现用户和项目两类实体特征的有效更新.在公开数据集上的对比实验结果表明,本文所提出的方法较现有基准方法在各项指标上均有所提升. 相似文献
19.
基于会话的推荐方法旨在根据匿名用户行为序列预测下一个项目。然而,现有会话推荐方法多基于当前会话建模用户偏好,忽略了会话间蕴含的语义信息及知识图谱中丰富的实体和关系信息,无法有效缓解数据稀疏性的问题。提出一种基于跨会话信息与知识图谱的图注意力网络推荐方法。通过有效整合跨会话信息和知识图谱中的项目知识构建跨会话知识图谱,利用知识感知的注意力机制计算各邻居节点的重要性分数,以更新项目节点表示,采用门控循环单元和图注意力网络将每个会话表示为该会话的当前偏好和全局偏好的组合。在此基础上,将会话嵌入和项目嵌入拼接后输入到多层感知机,得到目标会话和候选项目的预测分数,从而实现会话推荐。实验结果表明,与GRU4REC、SR-GNN、FGNN等方法相比,该方法在KKBOX和JDATA两个真实数据集上的推荐命中率分别至少提高了8.23和2.41个百分点,能有效增强会话推荐性能。 相似文献