共查询到20条相似文献,搜索用时 78 毫秒
1.
现有的图像窜改检测方法大多只针对某一种窜改方式,且存在窜改区域边界检测精度不高的问题,对此,提出了一种基于U型网络的双流编码器—解码器架构的图像窜改检测方法。首先利用编码器与解码器之间跳跃连接的方式来融合窜改图像中的低级和高级特征,并使用空洞卷积和CBAM注意力机制对编码器输出的特征进行融合,使得网络对不同尺度大小的窜改区域都有较好的定位性能;其次为了提高网络对窜改区域的边界检测精度,使用图像形态学方法制作了窜改边界数据集;最后使用多损失函数来同时优化网络的性能,即采用交叉熵和均方根损失函数来分别度量预测图的窜改区域损失和窜改边界损失。在CASIA、Columbia、NIST16、Coverage四个公开数据集上的实验结果表明,所提方法可以有效地检测出拼接和复制—粘贴两种窜改方式所伪造图像的窜改区域,输出像素级别的窜改区域定位图,且与其他主流窜改检测方法相比,所提方法在CASIA和Columbia数据集上的AUC值达到最高,在Columbia数据集上的F1值达到最高。 相似文献
2.
3.
4.
随着深度学习与隐写技术的发展,深度神经网络在图像隐写领域的应用越发广泛,尤其是图像嵌入图像这一新兴的研究方向.主流的基于深度神经网络的图像嵌入图像隐写方法需要将载体图像和秘密图像一起输入隐写模型生成含密图像,而最近的研究表明,隐写模型仅需要秘密图像作为输入,然后将模型输出的含密扰动添加到载体图像上,即可完成秘密图像的嵌入过程.这种不依赖载体图像的嵌入方式极大地扩展了隐写的应用场景,实现了隐写的通用性.但这种嵌入方式目前仅验证了秘密图像嵌入和恢复的可行性,而对隐写更重要的评价标准,即隐蔽性,未进行考虑和验证.提出一种基于注意力机制的高容量通用图像隐写模型USGAN,利用注意力模块, USGAN的编码器可以在通道维度上对秘密图像中像素位置的扰动强度分布进行调整,从而减小含密扰动对载体图像的影响.此外,利用基于CNN的隐写分析模型作为USGAN的目标模型,通过与目标模型进行对抗训练促使编码器学习生成含密对抗扰动,从而使含密图像同时成为攻击隐写分析模型的对抗样本.实验结果表明,所提模型不仅可以实现不依赖载体图像的通用嵌入方式,还进一步提高了隐写的隐蔽性. 相似文献
5.
提出了一种基于兴趣点检测和特征匹配的图像复制粘贴窜改检测方法。首先采用Harris算子检测图像中的角点作为兴趣点, 然后提取以兴趣点为中心的邻域内空域的五个均值特征形成特征向量, 最后记录相等位移矢量的发生频率并通过阈值化处理得到匹配的兴趣点, 从而标志复制粘贴区域。仿真实验表明, 该算法不仅可以有效检测多区域复制粘贴窜改操作, 而且能够有效抵抗多种窜改后处理操作, 包括加性高斯白噪声, JPEG压缩, 对比度、亮度和曝光度调整以及JPEG压缩和加噪的混合操作。 相似文献
6.
现有基于深度学习的图像拼接篡改检测方法大多依赖卷积操作的局部计算过程,感受野有限。此外,现有方法大多仅将篡改区域定位用于指导检测模型训练,难以学习更加丰富的篡改痕迹特征。针对上述局限性,提出了基于Transformer的多任务图像拼接篡改检测网络(Multitask Transformer-based Network, MT-Net),利用Transformer中的自注意力机制在特征提取过程获取图像像素之间的相关性,自适应地为各像素提供不同的关注度,提升检测网络对篡改痕迹的表征能力。此外,MT-Net同时考虑多个子任务从局部细化和整体感知两个方面共同引导网络学习,包括篡改区域定位、篡改边缘定位和篡改比例预测,并根据子任务特点设计了对应的损失函数来指导网络进行优化。实验结果表明,相比现有算法,所提算法在CASIA V2.0,Columbia和IDM2020这3个公开数据集上均取得了更好的检测准确性,F1值分别达到了0.808,0.913和0.675。可视化检测结果图表明,所提算法在定位拼接篡改区域时也有较好的表现。 相似文献
7.
8.
当JPEG图像被窜改时,通过检测人工的块状网格BAG(block artifact grid)误匹配的痕迹,可以判定待检测图像是否被窜改过,但这种算法有较高的虚警率,提出一种改进算法。首先利用BAG误匹配原理检测图像,再在疑似窜改区域检测竖直方向和水平方向上是否同时存在相邻BAG的边缘,从而将窜改区域与偶发噪声点区域分开,最后对全图进行形态学处理,进一步消除噪声。实验证明,该算法可以在有效检测窜改区域的情况下,降低算法的虚警率,在数字图像的被动检测领域有广泛的应用前景。 相似文献
9.
针对现有图像隐写模型存在网络训练不易收敛、梯度爆炸且生成样本质量差等问题,提出一种基于改进生成对抗网络的图像自适应隐写模型SWGAN-GP.将生成图像作为载体,使用HUGO自适应隐写算法进行信息隐藏;在损失函数中加入梯度惩罚,在网络结构中引入注意力机制,设置双判别器与生成器进行对抗训练.实验结果表明,该方法生成图像的I... 相似文献
10.
基于深度学习的遥感图像检测在地球资源调查、军事侦察、环境监测等领域有着广泛的应用,更精准、高效的目标检测算法是目前遥感图像检测研究的热点和难点。提出一种改进的CenterNet遥感图像检测算法,对遥感图像进行预处理,以适应CenterNet网络,提高网络对遥感图像的检测有效性;对原网络进行改进,将残差模块中的标准卷积替换成深度可分离卷积,有效降低网络计算量,减少冗余;同时加入注意力机制,抑制无用信息,提高网络的检测准确率。针对遥感图像观测面积大而目标相对较小,目标尺寸差异较大且分布不均匀的特点来说,降低了目标的误检率和漏检率。实验结果表明,改进的CenterNet算法相较于原始CenterNet算法的效果有明显提升,证明了改进算法的鲁棒性。 相似文献
11.
JPEG图像篡改引入的双重压缩会导致篡改区域的原始压缩特性发生改变,因此可以利用篡改区域压缩特性的不一致性来检测图像的篡改。利用该原理,提出了一种基于量化噪声的JPEG图像篡改检测算法。算法对待检测图像进行分块,计算每块的量化噪声,求取图像块的量化噪声服从均匀分布和高斯分布的概率,从而检测出篡改过的双重压缩区域。实验结果表明:该算法能有效检测双重压缩的JPEG图像篡改,并能定位出篡改区域。 相似文献
12.
针对伪造图像中常用的模糊操作,提出一种伪造图像的检测方法,该方法首先对伪造图像进行小波域同态滤波,增强处于高频段的人为模糊边缘,然后利用数学形态方法腐蚀掉自然边缘,保留增强的模糊边缘,最后对腐蚀后的边缘图像进行区域标定,从而定位出伪造区域。实验证明该算法相对基于传统同态滤波伪造检测方法,能够较准确定位伪造区域,降低误检率。 相似文献
13.
目的 伪造图像给众多行业埋下了隐患,这会造成大量潜在的经济损失。方法 提出一种边缘引导的双注意力图像拼接检测网络(boundary-guided dual attention network,BDA-Net),该网络通过将空间通道依赖和边缘预测集成到网络提取的特征中来得到预测结果。首先,提出一种称为预测分支的编解码模型,该分支作为模型的主干网络,可以提取和融合不同分辨率的特征图。其次,为了捕捉不同维度的依赖关系并增强网络对感兴趣区域的关注能力,设计了一个沿多维度进行特征编码的坐标—空间注意力模块(coordinate-spatial attention module,CSAM)。最后,设计了一条边缘引导分支来捕获篡改区域和非篡改区域之间的微小边缘痕迹,以辅助预测分支进行更好的分割。结果 实验使用4个图像拼接数据集与多种方法进行比较,评价指标为F1值。在Columbia数据集中,与排名第1的模型相比,F1值仅相差1.6%。在NIST16 Splicing(National Institute of Standards and Technology 16 Splicing)数据集中,F1值与最好的模型略有差距。而在检测难度更高的CASIA2.0 Splicing(Chinese Academy of Sciences Institute of Automation Dataset 2.0 Splicing)和IMD2020(Image Manipulated Datasets 2020)数据集中,BDA-Net的F1值相比排名第2的模型分别提高了15.3%和11.9%。为了验证模型的鲁棒性,还对图像施加JPEG压缩、高斯模糊、锐化、高斯噪声和椒盐噪声攻击。实验结果表明,BDA-Net的鲁棒性明显优于其他模型。结论 本文方法充分利用深度学习模型的优点和图像拼接检测领域的专业知识,能有效提升模型性能。与现有的检测方法相比,具有更强的检测能力和更好的稳定性。 相似文献
14.
现有的图像模糊篡改检测算法通常提取模糊操作引入的某单一特征进行判断,为更好地提高算法检测效率,提出基于核主成分分析的模糊篡改检测算法.通过奇异值分解提取第一组特征,计算图像二次模糊相关性作为第二组特征,计算图像质量因子作为第三组特征.运用核主成分分析方法实现多特征融合.采用支持向量机进行判断,从而实现模糊篡改检测.实验表明:该算法能够有效地检测数字篡改图像的模糊操作痕迹,并能对模糊篡改区域进行准确定位. 相似文献
15.
基于噪声分布规律的伪造图像盲检测算法* 总被引:2,自引:0,他引:2
提出了一种基于噪声分布规律的伪造图像盲检测方法。首先利用基于边缘保护的滤波方法检测出图像中的噪声;然后计算图像中同质区域噪声的均值、方差和信噪比等统计量,通过比较图像中同质区域的噪声分布规律的相似性程度实现伪造图像鉴别。实验证明该算法能有效地检测出伪造图像。 相似文献
16.
针对不同来源合成伪造数字图像提出了一种盲检测方法,不同数字图像背景噪声存在差异,因而伪造图像区域噪声方差不同。从待测图像小波分解后的高频子带中去除相应边缘区域的高频干扰,改进了噪声方差估计算法,并对所得噪声图像进行分块处理估计每一个分块的噪声方差,将方差相近的块进行融合,最后比较图像中纹理接近的同质区域,找出方差异常的位置。通过实验研究了方差估计精度,对不同来源的伪造图像进行了检测,结果表明算法提高了图像噪声方差的估计精度,在图像纹理接近的同质区域中可以定位图像的伪造区域。 相似文献
17.
目的 由于不同伪造类型样本的数据分布差距较大,现有人脸伪造检测方法的准确度不够高,而且泛化性能差。为此,本文引入“图像块归属纯净性”和“残差图估计可靠性”的概念,提出了基于图像块比较和残差图估计的人脸伪造检测方法。方法 除了骨干网络,本文的人脸伪造检测神经网络主要由纯净图像块比较模块和可靠残差图估计模块两部分组成。为了避免在同时包含人脸和背景像素的图像块上提取的混杂特征对于图像块比较的干扰,纯净图像块比较模块中选择只包含人脸像素的纯净人脸图像块和只包含背景像素的纯净背景图像块,通过比较两种图像块纯净特征之间的差异来检测伪造图像,图像块的纯净性保障了特征提取的纯净性,从而提高了特征比较的鲁棒性。考虑到靠近伪造边缘的像素比远离伪造边缘的像素具有较高的残差估计准确度,本文在可靠残差图估计模块中根据像素到伪造边缘的距离设计了一个距离场加权的残差损失来引导网络的训练过程,使网络重点关注输入图像与对应真实图像在伪造边缘附近的差异,对于可靠信息的关注进一步增强了伪造检测的鲁棒性。结果 在FF++(FaceForensics++)数据集上的测试结果显示:与对比算法中性能最好的F2Trans-B相比,本文方法的准确率和AUC(area under the ROC curve)指标分别提高了2.49%和3.31%,在FS(FaceSwap)与F2F(Face2Face)两种伪造数据上的准确率指标分别提高了6.01%和3.99%。在泛化性能方面,与11种已有方法在交叉数据集上的测试结果显示:本文方法与其中性能最好的方法相比,在CDF(Celeb-DF)数据集上的视频AUC指标和图像AUC指标分别提高了1.85%和1.03%。结论 与对比方法相比,由于提高了特征信息的纯净性和可靠性,本文提出的人脸图像伪造检测模型的泛化能力和准确率优于对比方法。 相似文献
18.
针对传统基于传感器模式噪声特性的图像篡改检测算法由于需要知道参考图像数据库因而应用局限性大的问题,提出了一种基于噪声子空间投影的图像篡改检测框架,分别采用主成分分析( PCA)、二维主成分分析(2DPCA)和核主成分分析(KPCA)实现了基于图像噪声特性的篡改检测,并通过实验验证了此方法的有效性。 相似文献
19.
摘要:随着数字多媒体技术及计算机网络技术的发展,数字图像在信息技术时代扮演着越来越重要的角色,图像的真实性成为现代人们广泛关注的热点之一,为此提出了一种基于均值漂移的图像复制粘贴伪造盲检测算法。提取图像的SURF(Speed up robust feature)特征点,通过最近邻匹配方法进行特征匹配,滤除冗余点,初步定位复制粘贴伪造区域。均值漂移(Mean Shift)将具有相同或相似属性的图像像素分割为同一区域,利用匹配后的SURF特征点与其所在均值漂移分割区域的位置依赖关系确定伪造区域,并采用边缘直方图和HSV颜色直方图衡量特征点所在分割区域与相邻分割区域间的相似度,进一步细化伪造检测结果,最终实现图像的复制粘贴伪造盲检测。实验结果表明,该算法能够鲁棒地、高效地检测出图像的复制粘贴伪造区域。 相似文献
20.
提出了一种新的图像盲检测技术,该技术先对图像进行两次分块得到两个子块集,分别对这两个子块集中的子块进行小波变换,将最大变换尺度的小波近似系数以向量形式表示各子块,一个子块集组成一个矩阵,利用主成分分析方法(PCA)对这两个特征矩阵进行二次特征提取,利用Pearson相关系数法对二次提取后的子块特征进行篡改检测,标记出篡改块。实验结果表明,该技术在降低运算复杂度的基础上,不仅能较好地检测进行了多处复制粘贴篡改的图像,且在抗高斯模糊、JPEG有损压缩和噪声方面都有较强的鲁棒性,尤其在篡改图像经过滤波和加性噪声混合严重干扰后,仍能检测出大部分篡改区域。 相似文献