共查询到18条相似文献,搜索用时 78 毫秒
2.
基于局部相似性的复杂网络社区发现方法 总被引:7,自引:1,他引:7
复杂网络是复杂系统的典型表现形式, 社区结构是复杂网络最重要的结构特征之一. 针对复杂网络的社区结构发现问题, 本文提出一种新的局部相似性度量, 并结合层次聚类算法用于社区结构发现. 相对全局的相似性度量, 本文提出的相似性度量具有较低的计算开销; 同时又能很好地刻画网络的结构特征, 克服了传统局部相似性度量在某些情形下对节点相似性的低估倾向. 为了将局部相似性度量用于社区结构发现, 推广了传统的Ward层次聚类算法, 使之适用于具有相似性度量的任意对象, 并将其用于复杂网络社区结构发现. 在合成和真实世界的网络上进行了实验, 并与典型算法进行了比较, 实验结果表明所提算法的可行性和有效性. 相似文献
3.
属性网络不但包含节点之间复杂的拓扑结构,还包含拥有丰富属性信息的节点,其可以比传统网络更有效地建模现代信息系统,属性网络的社区划分对于分析复杂系统的层次结构、控制信息在网络中的传播和预测网络用户的群体行为等方面具有重要的研究价值.为了更好地利用拓扑结构信息和属性信息进行社区发现,提出了一种基于矩阵分解的属性网络嵌入和社区发现算法(CDEMF).首先提出基于矩阵分解的属性网络嵌入方法,基于网络局部链接信息计算相邻节点的相似性,将其与属性接近度联合建模,通过矩阵分解的分布式算法得到每个节点对应的低维嵌入向量,即把网络节点映射为低维向量表示的数据点集合.接着提出基于曲率和模块度的社区划分方法,自动确定数据点集合中蕴含的社区数量,并通过对数据点集合聚类完成属性网络社区划分.在真实网络数据集上,将CDEMF方法与其他8种知名算法进行比较,实验结果表明CDEMF具有良好的性能. 相似文献
4.
基于搜索密度峰值的聚类思想,设计了一种网络节点的中心性度量模型,并提出了一种重叠社区发现算法.首先,定义了网络节点的内聚度和分离度,分别用于描述网络社区内部连接稠密和外部连接稀疏的结构特征,在此基础上计算节点的中心性度量表达节点对社区结构的影响力.接着,利用3δ法则选择中心度异常大的节点作为社区中心.以隶属度表达社区间的重叠特性,并给出了非中心节点的隶属度迭代计算方法,将各节点分配到其可能隶属的网络社区,以实现重叠社区划分.最后,利用人工网络和真实网络对提出的重叠社区发现算法进行验证,实验结果表明:该算法在社区发现质量和计算效率方面都优于许多已有重叠社区发现算法. 相似文献
5.
6.
针对复杂网络社团发现的问题,使用聚类方法对其进行详细的研究,将网络节点的数据结构转化成聚类算法的数据结构,根据节点之间的相似度对节点进行合并或分割,并且使用向量计算的方法对复杂网络的节点相似度进行度量。改进的算法把网络中的每个节点都作为一个信息源,具有收发信息的功能,按照改进的信息传递方法进行相似度值的传递和遍历,使用复杂网络中常用的Zachary俱乐部网络作为实验对象验证。本方法提高了复杂网络社团发现的算法效率。 相似文献
7.
复杂网络规模的增大导致网络中社区结构变得复杂,节点与社区之间的关系更多样化,有效度量大规模网络中节点邻域的社区构成,并对社区归属确定性有差异的节点分别进行处理,可以提高算法的社区发现质量。基于此,提出了一种基于节点稳定性和邻域相似性的社区发现算法(Node Stability and Neighbor Similarity Based Community Detection Algorithm, NSNSA)。首先定义节点的标签熵并对节点在社区发现过程中的稳定性进行度量,选择标签熵较低的节点作为稳定节点集;其次根据节点邻域的标签构成情况定义节点的邻域相似性,对节点与其邻居节点的社区归属一致性进行度量;然后利用稳定节点与其直接邻居中邻域相似性最高的节点构造初始网络,并在该子网络上运行标签传播算法,以得到可靠性较高的初始社区发现结果;最后将未聚类节点分配至与其Katz相似性最高的节点所在的社区,对小规模社区进行合并处理,以得到最终的社区划分结果。在真实网络及人工网络数据集上,与LPA,BGLL,Walktrap, Infomap, LPA-S等经典社区发现算法的对比实验表明,NSNSA算法... 相似文献
8.
针对基于网络嵌入的社区检测算法中节点嵌入和聚类过程独立进行时容易陷入局部极值的问题,文中提出基于双监督网络嵌入的社区发现算法.首先利用图自编码器,得到可保持网络的一阶相似性的节点嵌入.优化模块度,发现拓扑连接紧密的社区.采用自监督聚类优化,发现嵌入空间上相似的社区.引入互监督机制,使发现的社区在模块度优化和自监督聚类这... 相似文献
9.
复杂网络是对于复杂系统的高度抽象,其中许多性质如小世界性质、无标度性质以及聚集性质等等已经得到了充分的研究。大量文献表明,复杂网络呈现出的社区结构特性。如何在大型网络中高效地发现社区问题是近年来复杂网络的研究热点。文章讨论了一些关于社区发现方面的概念、理论、算法及应用等,并简述了其发展趋势。 相似文献
10.
为了减少标签传播算法(LPA)中不必要的更新、解决算法准确率低且稳定性差的问题,提出了基于节点中心性和社区相似性的快速标签传播算法(FNCS_LPA)。按照节点中心性度量对网络的节点从低到高进行排序后加入节点信息列表,利用节点信息列表来指导更新过程,提高社区发现的稳定性并避免不必要的更新;采取基于社区相似性的更新规则,提高了社区发现的准确率。在真实社会网络和LFR基准网络上进行实验:相比LPA和三种较好的LPA改进算法,FNCS_LPA在执行速度方面提升了几十倍,真实社会网络的模块度也相对较高,在社区结构比较模糊的LFR基准网络上的归一化互信息有明显的优势。实验结果表明FNCS_LPA在提高执行速度的基础上,提高了算法的稳定性和准确率。 相似文献
11.
社区发现是复杂网络研究中的一项重要研究内容,基于节点相似度的凝聚方法是一种典型的社区发现方法。针对现有节点相似度计算方法中存在的不足,提出一种基于多层节点的节点相似度计算方法,该方法既可以有效地计算节点之间的相似度,又可以解决节点相似度相同时的节点合并选择问题。进一步基于这种改进的节点相似度计算方法和团体之间的连接紧密度度量准则构建社区发现模型,并在真实世界的网络上进行社区发现实验。与GN算法、Fast Newman算法和改进的标签传播算法的实验结果相比,该模型可以更加准确地找到各个社区的成员。 相似文献
12.
13.
针对加权复杂网络中的重叠社团检测问题,提出了一种面向加权网络的基于Jaccard系数的BGLL模块密度优化算法(Modularity Density and Jaccard Based BGLL,DBGLLJ).利用节点重要度重构网络,根据模块度增益作为阶段函数和模块密度增益作为目标函数进行网络硬划分,并提出了结合改进的Jaccard系数的重叠检测方法.为验证算法,选择了3种算法在LFR网络和真实网络中进行测试,结果表明:在标准LFR网络和真实网络中,DBGLLJ算法检测效果较优,具有较高的重叠模块度以及重叠检测准确性,且运算效率较好.将所提算法应用于现实复杂机电系统因效性网络,重叠检测结果较好,具有较高的参考价值. 相似文献
14.
社区划分可以揭示复杂网络中的内在结构和行为动态特点,是当前的研究热点.文中提出了一种基于网络嵌入和局部合力的社区划分算法.该算法将网络的拓扑空间转化成欧氏空间,把网络节点转换成向量表示的数据点,首先基于重力模型和网络拓扑结构,提出局部合力和局部合力余弦中心性指标(Local Resultant Force Cosine... 相似文献
15.
社团结构划分对复杂网络研究在理论和实践上都非常重要.借鉴分布式词向量理论,提出一种基于节点向量表达的复杂网络社团划分方法(CDNEV).为了构建网络节点的分布式向量,提出启发式随机游走模型.利用节点启发式随机游走得到的节点序列作为上下文,采用SkipGram模型学习节点的分布式向量.选择局部度中心节点作为K-Means算法的聚类中心点,然后用K-Means算法进行聚类,最终得到社团结构.在真实和模拟两种网络上做了丰富的实验,与主流的全局社团划分算法和局部社团划分算法作了比较.在真实网络上CDNEV算法的F1指标比其他算法平均提高19%;在模拟网络上,F1指标则可以提高15%.实验结果表明,相对其他算法,CDNEV算法的精度和效率都较高. 相似文献
16.
针对基于多标签传播重叠社团挖掘算法COPRA因随机更新策略带来的不稳定性以及需要预先输入参数的局限性等问题,提出一种基于LeaderRank和节点相似性的多标签传播重叠社团挖掘算法.该算法首先利用LeaderRank算法对网络中的节点进行重要性排序从而确定节点的更新顺序,减少标签不必要的更新.在标签传播过程中,根据节点相似性重新设计标签的更新策略,提高算法的稳定性.将算法应用于人工网络和真实网络中进行实验,实验结果表明该算法在挖掘重叠社团上具有较高的准确性和稳定性. 相似文献
17.
高维数据的聚类特性通常难以直接观测.将其构建为复杂网络,节点间的拓扑结构可以反映样本之间的关系.对网络中的节点进行社区发现,可实现对数据更直观的聚类.提出一种基于网络社区发现的低随机性标签传播聚类算法.首先,用半径和最近邻方法将数据集构建为稀疏的全连通网络.之后,根据节点相似度进行节点标签预处理,使得相似的节点具有相同的标签.用节点的影响力值改进标签传播过程,降低标签选择的随机性.最后,基于内聚度进行社区的优化合并,提高社区的质量.在真实数据集和人工数据集上的实验结果表明,该算法对各种类型的数据都具有较好的适应性. 相似文献
18.
社区发现与链路预测任务是网络数据研究中的热点问题, 兼顾网络传递性与区块结构有助于捕捉个体之间的有效关联、探测数据中蕴含的内在规律, 帮助研究者挖掘更多数据价值进而做出决策. 当前的算法与模型多侧重于网络传递性或区块结构单一层面的分析, 且依赖一定的假设条件. 本文提出网络嵌入随机块模型(NE-SBM)用于社区发现与链路预测. 搭建贝叶斯框架完成模型参数的正则化, 利用Metropolis Hasting-Gibbs算法获得节点嵌入表示的隐位置与社区隶属关系, 基于多维尺度变换算法解决隐位置可识别性问题. 本方法可解决传统启发式算法中过分依赖判断准则或评价函数的问题, 对各类型的数据都具有更好的适应性. 人工数据及真实数据的实验结果进一步验证了该方法在社区发现与链路预测中有更优的表现. 相似文献