共查询到20条相似文献,搜索用时 109 毫秒
1.
求解多峰函数问题的模拟退火算法 总被引:2,自引:0,他引:2
论文提出了一种与演化算法群体搜索技术相结合的模拟退火算法(SimulatedAnnealingAlgorithmbasedonIn-dividuals,以下简记为ISA)。与传统的模拟退火算法(SimulatedAnnealing,以下简记为SA)不同的是它由多个个体在搜索空间里同时搜索,个体与个体之间没有信息交换,在遗传算子的作用下每个个体各自朝着适应值高的方向迅速演化,因而只要初始群体是均匀、随机地分布在搜索空间里并且个体数目适当多,算法最终都能找到多峰函数的所有峰值点。 相似文献
2.
针对目前多峰函数优化问题较难找到全部局部最优解的情况,提出了一种粒子群Memetic算法。算法结合了粒子群优化的全局搜索能力和爬山法的局部搜索能力,增强了算法搜索最优解的能力。实验结果表明,该算法求解精度较高,且收敛速度较快。 相似文献
3.
基于前沿的阴阳对优化算法(Front-based Yin-Yang-Pair Optimization,F-YYPO)是一种新颖的轻量级多目标优化算法,其利用两点--局部开发点[Pi1]和全局探索点[Pi2]在搜索过程中的迭代交换实现搜索。基于F-YYPO提出了一种改进的多目标优化算法F-ACYYPO。新算法对F-YYPO做了以下三方面的改进:(1)对多个目标函数进行全组合,以增强优化个体分布的均匀性;(2)引入已在YYPO算法中被证明有明显性能提高效果的缩放因子[α]自适应措施;(3)改进F-YYPO存档操作的更新方式。采用在2009年进化计算大会多目标优化算法竞赛中使用的UF测试套件以及PlatEMO平台下的DTLZ测试套件进行算法的性能评估,将F-ACYYPO与F-YYPO以及其他多种已知性能优良的多目标优化算法NSGA2、SPEA2、MOPSO、MOGWO、gamultiobj、MOEA\D、GDE3进行性能测试及比较,并通过两个综合性指标(反转世代距离IGD、超体积HV)和一个收敛性指标(世代距离GD)进行性能评价。实验结果表明,F-ACYYPO比F-YYPO具有更高的计算精度以及更快的收敛速度,并且与其他高性能多目标算法相比,F-ACYYPO表现出了很强的竞争性,在综合性能指标下有将近超1/2的测试用例占优。 相似文献
4.
为提高YYPO-SA1的性能,提出了一种基于动态D向分割和混沌扰动的阴阳对优化算法(NYYPO)。首先,基于牛顿衰减机制来动态调整YYPO-SA1中的D向分割概率;然后,在分割阶段加入混沌扰动策略,NYYPO利用动态调整机制在搜索前期使用较大的D向分割概率,在搜索后期则使用较小的D向分割概率,从而提高了算法的全局搜索能力,同时使用混沌扰动策略丰富了解的多样性,并提高了算法跳出局部最优的能力;最后,将NYYPO应用于风力发电机的参数优化设计问题。选用了15个单峰、多峰和组合测试函数进行性能评估,将NYYPO、YYPO-SA1以及6个代表性的单目标优化算法:粒子群优化(PSO)算法、乌鸦搜索算法(CSA)、灰狼优化算法(GWO)、鲸鱼优化算法(WOA)、花授粉算法(FPA)、麻雀搜索算法(SSA)进行性能评测比较。结果表明NYYPO相较于YYPO-SA1在Sphere函数上有着12个数量级的提升。而在Friedman检验中NYYPO在10维、30维、50维的时候的平均排名分别为2.87、2.0、1.93,均为总排名第一,可见NYYPO在统计学意义上具有显著的性能优势。同时,在风力发电机参数优化设计问题中NYYPO也取得了更好的优化结果。 相似文献
5.
本文给出了一种新的求解多峰函数优化问题的定义:定位所有的极值点,包括全局的峰值点和局部的峰值点。传统的演化算法框架都是群体固定的演化迭代过程,对求解多峰函数优化问题时由于无法事先得知峰值点的个数而很难确定合适的群体大小.影响了算法的效率。提出一种群体动态可调的演化方式,使得初始群体大小可任意指定,在演化过程中通过聚集和按比例引入新个体两个过程而动态变化。实验表明,该算法能尽可能多地定位峰值点。 相似文献
6.
求解带约束的多峰函数优化问题的新演化算法 总被引:1,自引:1,他引:1
求解带约束的多峰函数优化问题在科学研究和工程应用中具有重要的现实意义。本文在对郭涛算法和“两阶段子空间演化算法”改进的基础上,通过采用混沌初始化和混沌变异算子,给出了一种求解带约束条件的多峰函数优化问题的有效的演化算法。通过对具有多峰的复杂函数的测试表明:该算法在求解质量和收敛速度方面都得到了很好的结果,表现出较强的鲁棒性。 相似文献
7.
针对群居蜘蛛优化(SSO)算法求解复杂多峰函数成功率不高和收敛精度低的问题,提出了一种自适应多种群回溯群居蜘蛛优化(AMBSSO)算法。引入自适应决策半径概念,动态地将蜘蛛种群分成多个种群,种群内适应度不同的个体采取不同的更新方式,提高了种群样本多样性;提出回溯迭代进化策略,在筛选全局极值的基础上,根据进化程度执行回溯迭代更新,保证了算法全局寻优能力。高维多峰函数仿真结果表明,同SSO算法、PSO算法等优化算法相比,AMBSSO算法具有较快的收敛速度和较高的收敛精度,尤其适用复杂高维多峰函数优化问题。 相似文献
8.
适用于多峰函数优化问题的通用演化算法 总被引:7,自引:0,他引:7
本文在“两阶段子空间演化算法”的基础上加以改进,提出了一种解各种多峰函数优化问题的通用演化算法;并用五个复杂的函数进行了数值试验,得到了较好的结果。 相似文献
9.
模拟生物种族形成的进化算法与多峰函数优化 总被引:6,自引:0,他引:6
为寻求复杂多峰函数的全局最优解问题,提出了新型混合算法。该算法由带共享函数的遗传算法、移民技术、聚类算法和改进的Powell算法组成。由于上述算法的有机配合,提高了混合算法的全局和局部搜索能力。油藏系统应用实一和仿真实例证明了算法的有效性。 相似文献
10.
针对目前多峰函数优化问题较难找到全部局部最优解的情况,提出了改进的免疫优化求解方法。借鉴免疫系统的受体编辑操作、Baldwin效应,设计了相应的算子,增强了算法的学习能力,提高了算法的收敛速度。实验结果表明,本算法求解精度较高,提高了多峰函数寻优的精度。 相似文献
11.
针对在求解高维多峰值复杂问题时种群容易陷入局部搜索、求解精度低的问题,提出了一种基于自适应差分进化算法和小生境高斯分布估计的文化算法。将差分进化算法用于种群空间的优化,利用动态小生境识别算法在种群空间中识别小生境群体。信度空间利用高斯分布估计算法在小生境内进行局部优化,并将小生境特征存入进化知识库,进化知识库进一步引导种群空间,有效地保证了种群的多样性,避免了局部的重复搜索。最后,通过仿真实验测试表明,算法具有收敛速度快、求解精度高、稳定性高和全局搜索能力强等优势。 相似文献
12.
针对传统演化算法在求解函数优化,特别是多峰函数优化问题中出现的早熟现象以及演化后期收敛速度慢等问题,提出了一种新的反序小生境演化算法。该算法采用小生境反序交叉算子,以进一步增强局部寻优的能力;引入一种并行演化算法机制,加强群体寻优能力;同时,根据定义域划分初始种群,增加初始种群的覆盖面积。通过仿真实验表明,与传统的小生境演化算法相比较,利用该算法求解复杂多峰函数优化问题能够明显提高问题的求解精度和收敛速度,而且能够得到所有的全局最优解,更好地避免了求解问题时的早熟现象,达到了较好的效果。 相似文献
13.
针对最小化完工时间的作业车间调度问题(JSP),提出改进麻雀搜索算法(ISSA).首先设计有效的编码转换方式,形成JSP离散决策空间与麻雀搜索算法(SSA)连续搜索空间的对应关系.然后,针对SSA在求解后期易陷入局部最优,利用量子计算、正余弦搜索和警戒者数量递减策略对SSA进行改进,同时引入多邻域搜索和高斯扰动策略以弥补SSA在求解离散问题时深度发掘能力不足的弊端.最后,进行FT、LA系列10个测试问题、6种算法和2个应用实例的对比实验.结果表明,ISSA在求解JSP时,能获得更好的最小值、平均值和寻优成功率,验证了ISSA求解JSP的有效性. 相似文献
14.
15.
针对基本蝙蝠算法后期收敛速度慢、收敛精度不高、稳定性不强等问题,提出基于高斯扰动和指数递减策略的改进蝙蝠算法(GDEDBA)。将指数递减策略引入速度更新公式,使算法迅速进入局部寻优并展开精确搜索;构造高斯扰动项加入到局部新解产生公式,使局部新解中所有粒子与当前全局最优粒子产生信息交流与学习,防止陷入局部最优,增加种群多样性;设计扰动控制因子来控制高斯扰动的扰动范围,增强算法的稳定性。15个测试函数的仿真结果表明,改进算法的寻优性能显著提高,收敛速度更快,求解精度更高,稳定性更强。 相似文献
16.
针对萤火虫群优化(GSO)算法求解高维函数时存在求解精度不高、收敛速度慢等缺点,提出了一种带变异算子和集群觅食行为算子的改进萤火虫群优化算法。该算法使用变异算子来指导离群萤火虫的进化方向,从而提高了离群个体的利用率,改善了算法的整体效率。集群觅食行为算子的加入能使算法对捕捉到的全局最优域进行更进一步的求精,极大地提高了算法的计算精度和收敛速度;同时,该算子有效地防止了算法陷入局部最优值的危险,扩大了算法在后期的全局搜索范围。通过8个典型的基准函数测试,结果表明:改进后萤火虫群优化算法具有更强的全局优化能力和更高的成功率。 相似文献
17.
A novel hybrid meta-heuristic algorithm for solving multi objective flexible job shop scheduling 总被引:1,自引:0,他引:1
Finding feasible scheduling that optimize all objective functions for flexible job shop scheduling problem (FJSP) is considered by many researchers. In this paper, the novel hybrid genetic algorithm and simulated annealing (NHGASA) is introduced to solve FJSP. The NHGASA is a combination of genetic algorithm and simulated annealing to propose the algorithm that is more efficient than others. The three objective functions in this paper are: minimize the maximum completion time of all the operations (makespan), minimize the workload of the most loaded machine and minimize the total workload of all machines. Pareto optimal solution approach is used in NHGASA for solving FJSP. Contrary to the other methods that assign weights to all objective functions to reduce them to one objective function, in the NHGASA and during all steps, problems are solved by three objectives. Experimental results prove that the NHGASA that uses Pareto optimal solutions for solving multi-objective FJSP overcome previous methods for solving the same benchmarks in the shorter computational time and higher quality. 相似文献
18.
针对航次方案优选问题的数学模型,提出一种改进的蚁群算法。算法采取了三种改进策略,用两阶段比选降低计算复杂度,利用小群最优试探初始化信息素强度,设计一种动态间隔变异算子避免陷入局部最优。不同规模的数值实验表明,该算法具有良好的计算性能。 相似文献
19.
提出一种改进差分进化算法(IDE),以解决系统可靠性冗余分配问题.在罚函数法的基础上,对约束处理方法进行改进. 新约束处理方法在搜索过程中不需要在每一步都计算惩罚函数值,加快了寻优速度.具有良好的通用性,可以引入到其他智能优化算法中.将改进的算法用于求解4类典型的系统可靠性冗余分配问题,实验结果表明了所提出的改进算法具有很好的寻优精度和收敛速度. 相似文献
20.
为了克服差分进化算法容易出现早熟和收敛速度慢的问题,提出了一种混合差分进化算法.该算法在趋药性差分进化算法(CDE)的基础上,通过对较优个体进行变异操作,维护了种群多样性、避免早熟;通过将较差的个体与较优个体进行杂交,提高了开采能力、加快了收敛速度.基于这两种策略,算法的开采能力与探索能力达到了平衡.用该算法解决标准函数优化问题,并将仿真结果与其他算法进行比较,数值结果表明该文算法具有较快的收敛速度和很强的跳出局部最优的能力. 相似文献