首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
利用近红外光谱和偏最小二乘回归法预测脂肪酸组成   总被引:1,自引:1,他引:1  
采集了30种植物油样品在10000~55 00 cm-1范围内的近红外透射光谱,将所有样品作为校正集,随机抽取10种样品作为预测集,以气相色谱方法测得植物油中主要成分油酸、亚油酸、棕榈酸、硬脂酸的含量为参考值,应用偏最小二乘回归法建立了基于近红外光谱的测定植物油主要成分含量的校正模型。四种成分校正模型的交叉验证误差均方根为0.281 1%~1.496 4%,预测误差均方根为1.080 8%~18.063 0%,校正集的预测值与实测值的相关系数均大于0.99,预测集中除了棕榈酸的预测值与实测值的相关系数为0.817 9,其余均大于0.9。  相似文献   

2.
目的:为了满足高蛋白质藜麦的选育、栽培和农业实践所需,实现藜麦籽粒粗蛋白含量快速、无损检测。方法:本研究应用近红外光谱技术对藜麦籽粒粗蛋白含量的快速检测进行系统研究,选用具有代表性的122份藜麦品种为试材,以其中94份为建模集,28份为验证集,扫描得到藜麦建模集的近红外原始光谱,用Unscrambler 10.4软件进行光谱预处理并使用偏最小二乘法(PLS)建立藜麦籽粒粗蛋白含量的定量预测模型。结果:经滤波拟合法(Savitzky-Golay,SG)+标准正态变量(Standard Normal Variate,SNV)预处理建立的模型预测值决定系数(R2)为0.9380,被测组分浓度分析误差(RMSE)为0.4823,表现最佳。用此模型对验证集28份样品进行预测,相关分析表明,预测值与国标法实测值决定系数为0.9416;单因素方差分析表明,国标法实测值和模型预测值之间无显著差异(P>0.05),建立的模型具有很高的准确性,预测效果良好。结论:近红外光谱法作为一种简单快速无损的检测手段,能够用于藜麦籽粒粗蛋白含量的检测,可以为优质藜麦育种、栽培和农业实践提供技术支持。  相似文献   

3.
利用近红外光谱(4000cm-1~10000cm-1)结合化学计量学方法快速检测了镇江香醋中的浑浊度。首先,用近红外光谱仪采集香醋样本的近红外光谱数据以及用离心法测定样本的浑浊度值;然后,采用间隔偏最小二乘法(iPLS)、反向区间偏最小二乘法(biPLS)、联合间隔偏最小二乘算法(siPLS)优选光谱特征区间;最后,采用全光谱(4000cm-1~10000cm-1)偏最小二乘法(PLS)对优选出来的区间建立香醋浑浊度近红外光谱模型。结果表明,采用siPLS将全光谱均匀划分30个子区间,选择4个子区间[4 10 18 27]联合时,建立的模型预测效果最佳,其RMSECV和RMSEP分别为0.173和0.208,校正集和预测集相关系数分别为0.9337和0.9004。因此,利用近红外光谱技术快速检测香醋中的浑浊度是可行的。  相似文献   

4.
近红外光谱技术快速检测腊肉酸价和过氧化值   总被引:1,自引:2,他引:1  
探讨应用傅里叶近红外光谱技术快速定量检测腊肉酸价和过氧化值的方法。腊肉样品经粉碎、混匀后在AntarisⅡ傅里叶近红外光谱分析仪上扫描,获得其近红外光谱与国标法测定的酸价和过氧化值含量数据进行关联,用傅里叶变换近红外光谱技术结合偏最小二乘法建立近红外光谱与腊肉酸价和过氧化值含量的数学模型并进行预测。结果表明:酸价模型中,校正决定系数和交叉验证决定系数分别是0.99582和0.98687,校正均方差和交叉验证均方差分别是0.1370和0.1900;过氧化值模型中,校正决定系数和交叉验证决定系数分别是0.99999和0.99926,校正均方差和交叉验证均方差分别是0.756×10-4和0.684×10-3。用该模型对验证集样本进行预测并统计分析,表明预测值与测定值无显著差异,傅里叶近红外光谱技术快速定量检测腊肉酸价和过氧化值是可行的。  相似文献   

5.
探讨了快速、无损检测食醋中总酸含量的建模方法,利用近红外光谱法分别结合间隔偏最小二乘法(iPLS)、反向区间偏最小二乘法(BiPLS)、联合间隔偏最小二乘算法(SiPLS)进行建模,对各算法在不同划分区间数及区间选择时对建立模型的影响进行比较.结果表明:BiPLS、SiPLS(2,3,4区间联合)建模效果较好于iPLS所建立的模型,其中BiPLS在选择43个子区间,5个子区间联合(3,4,6,7,16)最佳,其RMSECV和RMSEP分别为0.2876和0.2726,校正集和预测集相关系数分别为0.9343和0.938;SiPLS在选择3个区间联合,49个区间数(3、5、7区间联合)最佳,其RMSECV和RMSEP分别为0.2607和0.2802,校正集和预测集相关系数分别为0.9463和0.9371;iPLS在选择22个子区间,第三个子区间,主因子数为4时最佳,其RMSECV和RMSEP分别为0.2998和0.2977,校正集和预测集相关系数分别为0.928和0.9213.不同偏最小二乘算法所选取区域大多集中于5500~6000 cm-1范围内,证明该波数范围应该是总酸的相应特征区间.  相似文献   

6.
近红外光谱法快速检测甜菜糖度的模型优化   总被引:1,自引:0,他引:1  
目的建立起近红外光谱技术关于甜菜糖度的最佳预测模型。方法研究了Savitzky-Golay平滑处理、Savitzky-Golay导数、均值中心化、差分求导、净分析信号、去趋势校正、标准正态变量变换和多元散射校正等8种预处理方法的多方法联用处理进行光谱数据的预处理,结合光谱波段优选,建立甜菜糖度与近红外光谱的预测模型。结果在进行模型的评价时,以误差均方根(SEP)、校正标准误差(SEC)与交叉检验误差(SECV)作为评价指标。结论发现经过光谱波段优选之后,结合Savitzky-Golay平滑、Savitzky-Golay导数、去趋势校正及均值中心化进行光谱数据的预处理得到的模型效果最佳。  相似文献   

7.
近红外光谱法预测浆料中胶黏物含量的研究   总被引:1,自引:1,他引:1  
探讨了近红外光谱法快速颅测浆料中胶黏物含量的可行性.基于实验室自制的75个胶黏物含量不同的浆料样晶,用近红外光谱仪漫反射方式在12500~4000cm,-1波数范围内采集相应样品的光谱,利用化学计量学软件建市样品胶黏物含量和光谱数据之间的相关性模型.结果表明,对原始光谱进行最大-最小归一法预处理后,选择12493.4~7498.4 cm-1和6102.1~5349.9 cm-1波数区间,用偏最小二乘法(PLS)和完全交互验证方式建立的校正模型和外部验证预测模型的相关系数R2分别为0.918和0.935,校正标准差SEC值为0.211,预测标准差SEP为0.211.该模型预测浆料胶黏物含量的重现性相对标准偏差和准确性相对甲均偏差分别小于15%和10%,可以达到工业分析的要求.  相似文献   

8.
为了对烟叶等级进行快速分类,采用云南曲靖地区150个烟草样品近红外光谱,结合偏最小二乘判别分析(PLS-DA),建立了烟叶等级分类模型,并对60个预测集样品进行了等级分类预测.结果表明:①训练集和预测集的预测正确率分别为100.0%(150/150)和96.7%(58/60).②PLS-DA对烟叶等级具有良好的分类效果.该模型为烟叶等级分类提供了一种新的快速鉴别分析的方法.  相似文献   

9.
基于近红外光谱快速定量检测面粉中曲酸的方法建立   总被引:1,自引:0,他引:1  
赵昕  张任  王伟  李春阳 《食品科学》2018,39(8):249-255
利用近红外光谱技术快速定量检测面粉中非法添加的褐变抑制剂曲酸。选取市场上常见3?种基本类型的面粉(高、中、低筋面粉),分别制备曲酸质量分数为0.0%、0.5%、1.0%、3.0%、5.0%、10.0%的面粉样品,并采集其在1?000~2?400?nm波段下的光谱数据。对比不同预处理下高筋面粉样品数据所建偏最小二乘(partial least squares,PLS)回归模型效果,选取Savitzky-Golay一阶导数为最优预处理方法。采用区间偏最小二乘(interval partial least squares,iPLS)法选取1?088.8~1?153.5?nm为最佳光谱区间。结果表明,基于最佳光谱区间所建PLS回归模型预测效果优于基于全波段光谱数据所建模型。进一步,基于所选最优区间对中、低筋面粉和混合样品集分别建立PLS回归模型。高、中、低筋面粉及混合样品集基于最优区间的PLS模型的决定系数为0.949~0.972,标准误差为0.581%~0.830%,验证集标准偏差与预测标准偏差的比值为4.171~4.830。结果表明,基于最优区间的近红外光谱方法对不同类型面粉中曲酸质量分数为1.0%~10.0%的样品具有较好的预测结果,结合具有低检测限的化学检测方法,在对大批量样品的检测中可提高检测效率。  相似文献   

10.
基于近红外光谱技术快速检测大豆中水分和粗脂肪含量。方法 首先采集350-2500 nm光谱范围的大豆近红外光谱,采用光谱-理化值共生距离(SPXY)算法将大豆样本划分为校正集样本与测试集样本,然后对原始光谱分别采用多元散射校正(MSC)、标准正态变量交换(SNV)、归一化(Nor)等9种方法进行预处理,最后使用偏最小二乘回归(PLSR)分析方法建立模型对样本进行定量分析。结果 原始光谱经过多元散射校正后建立的偏最小二乘回归模型对水分的预测精度最高,其校正集和测试集的相关系数分别为0.8964和0.9055 , 均方根误差分别为0.4211和0.5933;原始光谱经过归一化处理后建立的偏最小二乘回归模型对粗脂肪的预测精度最高,其校正集和测试集的相关系数分别为0.9084和0.9295 , 均方根误差分别为0.6897和0.6462。结论 近红外光谱(NIRS)结合预处理及偏最小二乘回归法,可以快速、准确的检测大豆水分和粗脂肪含量。  相似文献   

11.
目的:应用近红外光谱技术和化学计量学方法,建立板栗品质分析的近红外光谱模型。方法:采用傅里叶变换近红外光谱仪,采集样品的近红外漫反射光谱,再用传统理化分析方法测得样品的各项品质参数,采用偏最小二乘法(PLS)建立定标模型,内部交叉验证法对模型进行检验。结果:对板栗分别建立了水分、淀粉、硬度和糖度的PLS模型,4种PLS模型都非常理想,模型的相关系数均大于0.99。结论:采用近红外光谱法可以实现板栗品质指标的快速无损检测。  相似文献   

12.
应用近红外光谱(NIR)和偏最小二乘法(PLS),建立了北虫草中虫草素的定量分析校正模型。分别采集北虫草子实体的近红外光谱图,应用TQ化学计量学分析软件,对不同化学计量学处理方法进行了比较,并对光谱区域,光谱预处理方法,主成分因子数进行筛选。依据预测效果确定了最佳的校正模型,虫草素含量的预测结果与HPLC检测结果的相关系数为0.9919,校正模型的定标均方差(RMSEC)为102 mg/kg、预测均方差(RMSEP)为281 mg/kg。本方法操作简便,快速无损,可用于北虫草中虫草素含量的快速检测。   相似文献   

13.
采用近红外光谱仪,通过光学处理、数据处理和改进偏最小二乘法(MPLS)建立了快速测定高含磷量(321~632 mg/kg)和低含磷量(0~297 mg/kg)大豆油的近红外(NIR)模型。结果表明:高含磷量和低含磷量大豆油定标方程的交互定标决定系数(1-VR)分别为0.988和0.974,定标决定系数(R2)分别为0.992和0.980,定标标准误差(SEC)分别为2.420和2.512,交互定标标准误差(SECV)分别为2.538和2.678;现有数据预测标准偏差(SEP)分别为2.602和2.683;该近红外法在生产加工过程中可快速准确检测大豆油中含磷量。  相似文献   

14.
近红外光谱法快速测定制浆杨木的材性   总被引:1,自引:0,他引:1       下载免费PDF全文
用常规方法测定了4种常用制浆杨木的化学成分和基本密度,并采集了样品的近红外光谱。对光谱进行预处理后,运用偏最小二乘法和交互验证的方法,分别确定最佳主成分数并建立样品综纤维素、木素、苯-醇抽出物、基本密度的校正模型。独立验证中模型的决定系数(R2val)分别为0.9050、0.9098、0.9112、0.9165;预测均方根误差(RMSEP)分别为0.40%、0.42%、0.19%和0.0050 g/cm3;相对分析误差(RPD)分别为3.24、3.33、3.36和3.46;绝对偏差(AD)分别为-0.49%~0.77%、-0.66%~0.63%、-0.28%~0.33%、-0.0094~0.0068 g/cm3,预测均方根误差和绝对偏差基本符合对误差的要求,4个模型能够满足制浆造纸中常用杨木材性的快速测定。  相似文献   

15.
莲藕成分的近红外光谱分析模型的建立   总被引:1,自引:1,他引:1  
目的:应用近红外光谱技术和化学计量学方法直接测定莲藕的常规指标。方法:用傅里叶变换近红外光谱仪采集样品的近红外漫反射光谱,再用传统理化分析方法测得样品的各品质参数;采用偏最小二乘(PLS)法建立定标模型,并采用内部交叉验证法对模型进行检验。结果:分别建立了莲藕水分、粗纤维、质构和糖度的PLS模型,其中质构的PLS模型最理想,模型的相关系数大于0.97;莲藕粗纤维、糖度和水分的PLS模型的相关系数均大于0.88。结论:采用近红外光谱法可以实现莲藕品质指标的快速无损检测。  相似文献   

16.
17.
采取偏最小二乘法(PLS)建立起近红外光谱法快速测量植物纤维原料的甲氧基含量的模型。分别使用小波变换处理前后的光谱数据建立了植物纤维原料的甲氧基含量的PLS法测量模型,建立的两模型的平方相关系数分别为0.986和0.995,并用6个样本进行了预测,预测标准偏差分别为0.75和0.71。结果表明,该模块具有较高的学习和预测精度,可以用于大量植物纤维原料样本的甲氧基含量的快速测定,这将为甲氧基含量的测量提供了新的理论和方法。  相似文献   

18.
基于偏最小二乘(PLS)法白酒中乙醇含量的近红外检测   总被引:4,自引:0,他引:4  
将近红外光谱与偏最小二乘法相结合,对白酒中乙醇含量进行快速准确检测。研究了标准溶液的近红外吸收光谱和一阶导数光谱,采用偏最小二乘法建立校正模型,选择了最佳主成分数,并对实际酒样中乙醇进行预测,得到了比较满意的结果。  相似文献   

19.
核磁共振氢谱结合化学计量学快速检测掺假茶油   总被引:2,自引:0,他引:2  
石婷  陈倩  闫小丽  朱梦婷  陈奕  谢明勇 《食品科学》2018,39(22):241-248
摘 要:以纯茶油和掺假茶油(掺入大豆油、玉米油)作为核磁共振氢谱检测对象,结合化学计量学方法分析处理核磁数据,建立一种能快速预测茶油掺假的方法。结果表明:纯茶油和掺假茶油在主成分分析得分图上有较好地区分,且掺假样品随掺假比例在图中呈规律性分布,但少部分低体积分数的掺假油与纯茶油重叠。而采用偏最小二乘判别(partial least squares discriminant analysis,PLS-DA)法可以得到更好的分离效果,在该模型中,纯茶油的判别准确率为100%。进一步采用PLS可实现对茶油掺假水平的准确定量测定。该方法可简单、快速地用于茶油的掺假鉴别,在茶油品质控制及评价方面具有很大的应用潜力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号