共查询到16条相似文献,搜索用时 75 毫秒
1.
考虑到电商平台的日益发展,使用人工分类的方式对服装进行分类无法满足目前的需求.本文从实际的应用场景出发,针对于服装图像进行分类时会受到背景因素干扰、服装图像关键部位信息以及算法模型运行的的硬件要求三个方面,分别进行改进设计.提出:1)消除背景的干扰;2)图像局部信息的利用;3)模型的轻量化处理.最终得到了在满足准确性的前提下,可以在普通低配置PC端进行运行的算法模型,提升了工作效率,同时节省了成本. 相似文献
2.
为了轻量化模型,便于移动端设备的嵌入,对YOLOv4网络进行了改进.首先,用MobileNetV3作为主干网络,并使用深度可分离卷积替换加强特征提取网络的普通卷积,降低模型参数量;其次,在104×104特征图输出时融合空洞率为2的空洞卷积,与52×52的特征层进行特征融合,获取更多的语义信息和位置信息,细化特征提取能力,提升模型对极小目标的检测性能;最后,将原来的池化层使用3个5×5的Maxpool进行串联,减少计算量,提升检测速度.实验结果表明,在华为云2020数据集上,改进算法的mAP比YM算法提高了2.33%,在公共数据集VOC07+12上, mAP提高了3.12%, FPS比原来的YOLOv4算法提高了一倍多,参数量降低至原来的18%,证明了改进算法的有效性. 相似文献
3.
为了使卷积神经网络模型更好地应用于移动端和嵌入式设备,必须从减少模型参数量和降低计算复杂度两方面入手。首先简要介绍了目前几种流行的解决方法,并详细阐述了六个轻量化卷积神经网络模型,展示了其中应用的不同网络计算方式的计算量和参数量,论述了模型的核心构建模块、整体网络结构和创新之处。分析了各网络以及常规卷积网络在ImageNet数据集上的分类准确度,进而对比各网络实现轻量化的技巧,得出在进行模型设计时采用直接指标替代间接指标的结论。同时发现了残差结构对保证轻量化模型准确率的重要性。最后对轻量化卷积神经网络的发展前景进行了展望。 相似文献
4.
遥感影像中的建筑物是城市大数据采集、分析的重要来源。大规模、高精度的遥感影像建筑物提取模型对智慧城市时空大数据建设、推动城市智能计算具有重要意义。当前建筑物提取模型通常利用大型卷积神经网络模型或多种网络模型串联,并辅以其他边界细化算法来提高建筑物提取的精度。但是,网络模型的大型化、复杂化对计算资源消耗高,需要更多的训练时间或算力,不利于大规模快速的网络模型训练预测及在便携式等终端设备上部署应用。因此,研究面向大规模快速的遥感影像建筑物提取,提出一种轻量化全卷积神经网络模型和特征融合方案,模型参数较轻量化前减少约40%,GPU内存占用下降33.61%,平均训练时间和预测时间分别下降32.40%和26.31%。融合后的模型在公开数据集测试得到的MIoU精度在74.14%左右,达到了保证高精度建筑物提取前提下模型轻量化的预期。 相似文献
5.
传统神经网络具有过度依赖硬件资源和对应用设备性能要求较高的缺点,因此无法部署于算力有限的边缘设备和移动终端上,人工智能技术的应用发展在一定程度上受到了限制.然而,随着科技时代的到来,受用户需求影响的人工智能迫切需要在便携式设备上能成功进行如计算机视觉应用等方面的操作.为此,以近几年流行的轻量化神经网络中的卷积部分为研究... 相似文献
6.
7.
由于旋转机械的振动信号具有非平稳、复杂多样、数据量大的特点,传统的方法难以较好地实现旋转机械故障诊断。近年来,基于深度学习的故障诊断算法发展迅速,其中,卷积神经网络(Convolutional Neural Network,CNN)由于可实现自动提取特征、运算效率高等优点受到广泛关注,但在识别准确率等方面仍然存在部分问题。为实现多传感器监测状态下的旋转机械故障诊断,在经典卷积神经网络结构的基础上,引入了多通道数据融合处理、空洞卷积层、批标准化处理、PReLU激活函数、全局平均池化层等改进方法,构造了一种新型的、高效的空洞卷积神经网络(Atrous Convolution-Convolutional Neural Network,AC-CNN),并基于该模型进行了旋转机械故障诊断实验。实验结果表明,提出的故障诊断模型分类准确率可达99%以上,对比其他神经网络方法具有明显优势。 相似文献
8.
本文提出了一种基于两阶段目标检测的方法,该方法基于FasterR-CNN模型,以ResNet50为主干网络,利用特征金字塔网络融合多个特征层的上下文信息,并在后续特征图的处理过程中加入空洞卷积,以扩大特征图的感受野,增强对遮挡目标的检测。 相似文献
9.
为了在滤波器参数保持不变的情形下扩大感受野,在非常深的卷积网络超分辨率模型网络中引入空洞卷积方法.首先,分析不同膨胀系数组合的空洞卷积块的感受野,并选择更好的结构作为空洞卷积块.然后,堆叠卷积块并加入残差连接构成深度卷积网络.最后,使用多种训练技巧对网络进行重新训练.实验表明,对于数据集Set5上较大的扩大因子,文中构建网络可提升重建效果,并在视觉上也有明显优势. 相似文献
10.
语义分割是计算机视觉中的基本任务,是对图像中的不同目标进行像素级的分割与分类.针对多尺度的目标分割难题,本文提出了一种基于Res Net网络的方法,通过定义并联支路,将浅层特征图像信息融合到深层特征图像中,提出新的空洞空间金字塔模块,该模块采用并行的不同采样率的空洞卷积进行特征提取与融合,从而更有效的提取不同层的特征以及上下文信息,并且在新模块中加入批规范化计算,增强参数调优的稳定性.本文还采用了Adam自适应优化函数,在训练的过程中,使得每个参数的更新都具有独立性,提升了模型训练的稳定性.本文结果在PASCAL VOC 2012语义分割测试集中取得了77.31%mIOU的成果,优于Deeplab V3的效果. 相似文献
11.
为更好地提取烟雾图像的全局特征,提出一种基于膨胀卷积和稠密连接的烟雾识别方法.依次堆叠膨胀率不同的膨胀卷积,扩大卷积核的感受野,使得卷积核能够感知更广泛的烟雾图像区域,在不同膨胀卷积层之间设计稠密连接机制,促进卷积层之间的信息流通,实现烟雾图像局部特征和全局特征的融合.在此基础上,构造应用于烟雾识别的深度卷积神经网络,并在训练样本和标签的凸组合上完成训练以增强模型的泛化能力.实验结果表明,与AlexNet、VGG16等方法相比,该方法具有较好的烟雾特征表达能力,能在提高烟雾识别效果的同时,减小模型尺寸效果,其实用性较好. 相似文献
12.
针对目前卷积神经网络种子分选方法存在识别精度不高、模型参数量大、推理速度慢且难于部署等问题,提出了基于轻量级金字塔空洞卷积网络的种子分选方法;该网络提出了残差空间金字塔模块,利用不同扩张率的空洞卷积扩大感受野,更有效地提取多尺度特征;再结合深度可分离卷积技术减少模型参数量和计算复杂度;在网络结构中引入轻量级注意力机制模块,利用局部跨通道交互方式关注重要的信息,提高种子关键特征提取能力;实验结果表明,提出网络参数量仅为0.13 M,在玉米和红芸豆数据集上准确率高达96.00%和97.38%,在NVIDIA Quadro板卡上识别单张图片时间仅为4.51 ms,均优于主流轻量级网络MobileNetv2、Shufflenetv2和PPLC-Net等,可以满足工业现场实时识别的要求。 相似文献
13.
最近几年,深层卷积神经网络在解决单图像超分辨率问题上有着不错的表现。为了改善卷积神经网络的层数越深带来的计算量越大和实时重建速度越慢的缺点,结合现有的卷积网络模型,本文提出一种轻量级的网络结构。在神经网络层中减少网络层数,利用通道分离构建出局部特征的多尺度增强结构,进一步地结合残差网络进行模型构建。实验结果表明,与LapSRN方法、VDSR方法、传统的插值法等相比,该方法实时重建速度较快,且在峰值信噪比和结构相似性上不弱于其他方法。 相似文献
14.
15.
传统图像目标识别模型通常使用结构复杂、层数更深的神经网络以提升其在计算机视觉领域的准确率,但该类模型存在对计算机算力要求过高、占用内存较大、无法部署在手机等小型计算机上的问题。提出一种轻量化卷积神经网络ConcatNet,采用特征拼接的方式,通过多支路并行将通道注意力机制与深度可分离卷积相结合,在增强有效特征权重的基础上,降低模型的参数量和复杂度,实现网络的轻量化。在网络输出阶段,采用先筛选再混洗的方式提高模型的识别精度。利用全局平均池化和全局随机池化提取中间特征图的信息,其中全局平均池化可以较好地保留背景信息,全局随机池化按概率值选取特征,具有较强的泛化性,两者相结合能够减少信息的丢失。在CIFAR-10、CIFAR-100等数据集上的实验结果表明,与MobileNetV2等轻量化神经网络相比,ConcatNet网络在保持Top-1和Top-5精度相当的情况下,将参数量和计算复杂度均降低了约50%,极大降低了对承载设备的要求。 相似文献
16.
目前,许多深度神经网络模型以双向长短时记忆网络结构处理中文分词任务,存在输入特征不够丰富、语义理解不全、计算速度慢的问题。针对以上问题,该文提出一种基于膨胀卷积神经网络模型的中文分词方法。通过加入汉字字根信息并用卷积神经网络提取特征来丰富输入特征;使用膨胀卷积神经网络模型并加入残差结构进行训练,能够更好理解语义信息并提高计算速度。基于Bakeoff 2005语料库的4个数据集设计实验,与双向长短时记忆网络模型的中文分词方法做对比,实验表明该文提出的模型取得了更好的分词效果,并具有更快的计算速度。 相似文献