首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
以TM80气体涡轮流量计为研究对象,采用数值模拟与实验测试相结合的方法对其进行结构优化研究。数值结果表明压力梯度骤变和边界层分离的出现主要由流量计的表芯支座和后导流体引起。由此提出了关于表芯支座坡度和后导流体直径的结构优化方法,将表芯支座的坡度设计为15°,将表芯支座侧面的台阶流转变成渐缩流;将后导流体直径缩减为62 mm,将后导流体侧面的台阶流转变成等直径的管道流。数值模拟和实验测试证实,当表芯支座坡度设计为15°、后导流体直径设计为62 mm时,流量计的压力损失显著降低,仪表系数变得更加稳定,线性度误差明显变小,说明该结构优化方法可以明显提升流量计的计量性能。研究结论有助于为今后开发性能更好的气体涡轮流量计提供有力的理论指导和技术支持。  相似文献   

2.
通过数值模拟和实验测试相结合的方法,研究了LWQ80气体涡轮流量计后导流体的结构优化及其计量性能的变化规律。基于流量计内部流场特征及其流动机理的探究,分析得出造成后导流体压损的主要原因是后导流体区域的壁面边界层分离和流体流向偏转。由此提出了缩小分离区和提升导流片导流效果的优化思路,通过延长后导流体的长度和延后导流片的位置,设计了一种改进型的后导流体结构。研究结果表明:后导流体结构经过改进后,气体涡轮流量计的计量性能得到了明显提升。在流量为250 m~3/h时流量计的压损降低了20.5%左右,仪表系数的恒定性显著提高,最大示值误差降低了近2.5倍,且能有效延长流量计的使用寿命。研究结果有助于为气体涡轮流量计的结构与性能优化提供理论指导和技术支持。  相似文献   

3.
气体涡轮流量计的改进及实验测量   总被引:5,自引:0,他引:5  
对气体涡轮流量计的主要组件引起的压力损失进行了对比实验测量,比较了整流栅形状、叶轮叶片数和后导流器不同结构对压损的影响程度。结果表明,后导流器相对整流栅和叶轮是产生压力损失的主要因素,采取改进的后导流结构,可以明显降低流量计的压损,同时得到更好的仪表系数值,提高流量计准确度。  相似文献   

4.
在分析气体涡轮流量计结构和数学模型的基础上,针对涡轮叶片螺旋升角对仪表性能的影响,以安装35°、45°和55°三种不同叶片螺旋升角涡轮的DN150型气体涡轮流量计作为实验对象,搭建仪表负压检测平台,分别对仪表系数、压力损失和计量精度进行实验检定与对比分析。实验结果表明,合理设计涡轮叶片螺旋升角能显著改善气体涡轮流量计的性能,为叶片螺旋升角进一步优化及其对仪表性能影响规律的研究提供了实验基础。  相似文献   

5.
阐述高压气体涡轮流量计研制的意义和设计依据;并介绍高压涡轮流量计的工作原理、结构特点、性能测试、计量特性等,以此证明研制的高压气体涡轮流量计可以作为贸易计量应用在高压管线上。  相似文献   

6.
本文针对于丹东东发集团有限公司开发的DN100气体涡轮流量计研发初期曲线不好的问题,从分析导流器的结构入手,通过试验证明导流器尾端的混合室的大小与曲线形状有着规律性的关系,确定了最佳的混合室尺寸,进而使得DN100气体涡轮流量计的性能曲线得到了优化。  相似文献   

7.
为提高加热效率,降低气体流过风道加热器的压力损失,通过L_9(3~4)正交试验法并结合数值模拟对其结构进行优化。以第一、二级导流板的长度和角度为影响因素,以温升和压降为评价指标,采用Fluent对9种试验方案进行定常模拟。通过正交试验得出最优结构,并对优化前后的风道加热器流场和温度场进行分析。研究表明:第一级导流板角度对温升的影响最显著,第二级导流板角度对压降的影响最显著。最优结构时两级导流板角度分别为21°和27°,长度分别为170 mm和150 mm。与优化前相比温升提高2.59%,压力损失降低15.95%,内部涡流减弱,湍流动能减小,气流更加平稳,达到优化目标。  相似文献   

8.
气体超声波流量计的测量精度由飞行时间的测量精度和流量计自身的流场适应性决定,流量计的流场适应性又由流量计的声道布置和整流器的性能决定。文章设计了一种内嵌于流量计的整流器,详细阐述了该整流器的结构、各模块的功能。介绍了整流器性能优化的理论依据、过程以及整流器性能优劣的判别准则。该整流器性能优化主要取决于起旋器的优化,文章给出了装有8片起旋器和装有10片起旋器的整流器在直管、单弯管下的性能参数对比,试验结果显示装有10片起旋器的整流器有着更好的流场适应性:重复性满足国标要求,直管示值误差与弯管示值误差的差值<0.3%。文章的创新点在于给出气体超声波流量计整流器设计和优化的理论依据和一整套流程,对于设计气体超声波流量计整流器的科研人员有借鉴意义。  相似文献   

9.
为了提高井下泥浆涡轮的水力性能,采用NACA翼型+前弯叶片代替圆弧平板直叶片,数值模拟研究改造前后井下泥浆涡轮的内部流场和水力性能。结果表明采用NACA翼型+前弯叶片,能够有效地增加转叶压力面与吸力面的压差,降低转叶出口的能量损失,提高涡轮的输出轴功率和效率,降低涡轮进出口的压降。并通过性能试验,验证改造前后涡轮水力性能的改善效果。  相似文献   

10.
为描述涡轮叶片螺旋角对仪表性能的影响,利用CFD计算软件,对安装叶片螺旋角为35°和45°涡轮的DN 150型气体涡轮流量计的内流场进行数值模拟,在此基础上预测流量计的始动流量和压力损失。最后,利用黄金分割法选取量程范围内的测量点,通过仪表负压检测平台得到仪表系数和压力损失。实验结果表涡轮叶片螺旋角对仪表性能参数的影响显著,CFD数值模拟能够较准确地描述仪表内流状态,实现仪表性能的预测,为叶片螺旋角的进一步优化选择提供可行方法。  相似文献   

11.
为了降低迷宫密封的泄漏量,提出一种在直通型迷宫密封的密封齿前端和后端设立凹槽的密封结构,基于CFD方法,建立迷宫密封数值仿真模型。通过与已有试验数据的对比,验证模型的正确性。探讨不同湍流模型的适用范围,并对比光滑表面、前置凹槽、后置凹槽3种结构在泄漏量、轴向压降及流场速度分布的差异性。结果表明:SST湍流模型更加适用于迷宫密封这种窄间隙的近壁面流动;前置凹槽结构降低泄漏量的效果较差,只有在高压力差下才能降低泄漏量;后置凹槽结构能改变迷宫密封腔内漩涡方向及状态,进而降低迷宫密封透气效应,加剧密封的能量耗散的同时降低泄漏量。因此,后置凹槽的迷宫密封结构具有较好的工程应用前景。  相似文献   

12.
涡轮流量计前导流器的结构与性能   总被引:4,自引:0,他引:4  
对DN100气体涡轮流量计的关键部件之一前导流器引起的流量计压力损失进行试验测量和数值计算.对比分析两种不同结构前导流器对压力损失的影响,发现前导流器的结构变化不仅影响该部位的气流速度分布,使当地压力损失发生变化,更重要的是对后面各部件内的气体流动速度梯度和压力恢复也有明显影响,使总压损失进一步放大或减小.数值计算通过分析流动参数的变化从流动机理上解释了结构与压损间的关系.  相似文献   

13.
A novel vortex flowmeter by using pressure sensors and improved convection velocity estimation was proposed to extend the lower operation range of flowrate. The two sensors were mounted on the positions of 0.2D45° and 1.0D45° according to the signal strength and vortex wavelength criterion. The high-frequency pressure sensors were designed to acquire the undistorted signals of vortex-induced pressure fluctuation and further compute the vortex convection velocity. Aiming at the problem of multiple peaks in cross-correlation calculation, a modified transit time estimation technique combined with a moving-average-filter-based cross correlation function were introduced and verified by the tests. Then, the mean convection coefficient was obtained and the performance of the transit-time-based method was analyzed and compared with that of the frequency-based method. It indicated that the novel vortex flowmeter is robust at low Reynolds number range, which achieves a turndown ratio of 8:1 with an accuracy of ±2% in the Reynolds number range from 1.53×104 to 1.23×105. A remarkable improvement of turndown ratio is achieved compared to the original frequency-based method of 3:1. The proposed system of pressure sensors shows good prospect for the gas metering in small pipes due to the feature of non-invasion and sufficient high frequency response.  相似文献   

14.
Piezoelectric and transient differential pressure sensors are two among the most widely employed sensors for vortex flowmeter application. The present study evaluates the performance of these two techniques under fully developed and disturbed flow conditions. Firstly, the location of the transient differential pressure sensor is optimized to obtain high amplitude signals and good linearity in Strouhal number. Empirical mode decomposition method in combination with autocorrelation decay is successfully employed at high Reynolds numbers to identify the vortex shedding frequency in presence of hydrodynamic noise. The performance of the differential pressure sensor deteriorates significantly under disturbed flow conditions at low Reynolds number due to the presence of low frequency components. This deterioration in the signal quality limits the lower operating range of the flowmeter with differential pressure sensor. The output signals of the piezoelectric sensor and differential pressure sensor under no flow condition are compared to obtain the background noise due to piping vibrations and electrical interferences. These results will help a designer to suggest robust signal processing algorithms for vortex frequency detection.  相似文献   

15.
本文介绍了FPSO原油外输计量标定系统中流量计与标定装置的选型和设计原则,并通过对具体的FPSO原油外输计量标定系统进行选型分析。对于大口径、大流量的原油贸易交接计量,液体超声波流量计在尺寸、压降和免维护性等方面有突出优势。在标定装置的选择上,可优先考虑采用双向球形体积管对液体超声波流量计进行现场检定。  相似文献   

16.
铰接式车辆后车体受力情况复杂,设计中需要重点分析.根据整车的受力情况,对后车体和后车架的受力情况进行分析,获取不同工况下的受力特点;基于有限单元法搭建后车体的强度分析模型,选取水平插入工况、后轮离地工况和前轮离地等三种典型工况进行分析,获取各工况下应力的极值点;基于分析结果对后车架进行结构和工艺优化设计;采用应变花对优...  相似文献   

17.
在涡街流量计中,流体通过涡街发生体后会产生压力损失及由旋涡引起的压力波动,根据这一特点,本文提出利用差压检测技术,通过单路差压传感器同时感受由涡街发生体引起的流体双重变化特性,测量流体质量流量的新方法。本文重点对差压检测取压位置进行研究,利用空气和水两种流体介质进行了一系列实验,得到不同取压位置的差压信号与流量关系,确定了能正确测量质量流量的差压取压位置。结果表明,该测量方法结构简单,是测量质量流量的有效方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号