首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
在产品表面缺陷智能检测过程中,存在缺陷样本收集困难、样本不平衡、目标尺寸小和难以定位等问题。针对磁芯表面缺陷检测中存在的问题进行了研究,提出了一种基于深度学习的图像增强和检测方法,首先利用结合高斯混合模型的深度卷积生成对抗网络生成磁芯缺陷图像,然后结合泊松融合方法产生增强的数据集,最后基于YOLO-v3网络,实现了磁芯表面缺陷的智能检测。实验表明,该方法能够生成质量更高、缺陷更明显的图像,检测准确度提升了5.6%。  相似文献   

2.
为了提高轮胎缺陷检测的效率与准确率,论文设计了一款轮胎缺陷检测系统。该系统首先将数据库中选择的原始图像进行预处理,在提高图像的对比度之后,对预处理后的轮胎图像进行固定像素大小的切割,将轮胎图像切割为若干张像素大小为1024*1024的图像,论文选用视觉图像注释器对切割后的轮胎图像进行特征标记,标记后的图像以坐标形式呈现,用Mask R-CNN网络对准备好的训练集进行自适应训练,最后通过测试集对训练好的模型进行评测,实验发现轮胎杂物缺陷检测率为96.68%。可以发现,该系统可以有效地检测出轮胎的杂物缺陷,使得轮胎厂家可以节约人工成本,大大缩减轮胎缺陷的检测时间。  相似文献   

3.
当前导光板表面缺陷仍主要由人工肉眼观察进行检测,仅有少数生产厂家利用传统的图像处理方法进行检测.由于导光板缺陷在高分辨率工业相机拍摄的图像成像下仍极其微小,且不同缺陷的特征各异,以及整张导光板自身的导光点分布密集、不均匀等纹理特点,导致传统的图像处理检测方法需要经验丰富的视觉工程师进行大量的特征提取算法编程工作和昂贵的代码维护成本,准确率低且稳定性差,为此提出一种基于深度学习语义分割的缺陷检测方法.该方法通过训练神经网络的方式来自主学习提取导光板缺陷特征从而避免繁杂的特征提取算法编程工作.首先,对搜集的导光板缺陷进行缺陷标记,制作样本集;其次,利用迁移学习将预先训练好的金字塔场景解析网络(PSPNet)对标记样本进行再训练;进而,利用训练好的模型实现对导光板缺陷的检测;由于单独的深度学习语义分割缺陷检测方法通常无法满足工业实际应用需求,最后还需结合简单的机器视觉方法,对深度学习语义分割方法检出的所有疑似缺陷区域进行二次判断筛选.实验结果表明,该方法针对亮点、暗点和划痕3种缺陷的检出率高达96%,基本可以满足工业检测要求.  相似文献   

4.
基于深度学习的表面缺陷检测方法综述   总被引:6,自引:0,他引:6  
陶显  侯伟  徐德 《自动化学报》2021,47(5):1017-1034
近年来, 基于深度学习的表面缺陷检测技术广泛应用在各种工业场景中. 本文对近年来基于深度学习的表面缺陷检测方法进行了梳理, 根据数据标签的不同将其分为全监督学习模型方法、无监督学习模型方法和其他方法三大类, 并对各种典型方法进一步细分归类和对比分析, 总结了每种方法的优缺点和应用场景. 本文探讨了表面缺陷检测中三个关键问题, 介绍了工业表面缺陷常用数据集. 最后, 对表面缺陷检测的未来发展趋势进行了展望.  相似文献   

5.
钢铁被广泛地应用于工业生产,其质量的优劣影响着钢铁制品的可靠性。现有检测技术基于深度学习等方法来检测钢铁表面缺陷区域,但仍存在检测速度慢、模型参数量大和应对复杂场景处理能力弱的问题。针对问题设计了一种基于轻量化模型的钢铁表面缺陷显著性检测方法,能够实现快速准确地检测钢铁表面缺陷区域。该方法以深度可分离卷积为基础设计模型,从而减小模型整体参数量并提升检测速度;在模型中引入多尺度特征,强化轻量化模型对于图像特征的提取能力,提升对复杂环境下的适应性。该方法在公开数据集SD-saliency-900上进行了广泛的实验,实验结果证明提出模型在检测精度不受影响的前提下,大幅减小模型参数量并显著提升模型推理速度。相较于其他基准方法,所提出模型具有更好的复杂环境应对能力以及实际应用性。  相似文献   

6.
作为最基础的交通基础设施之一,道路对交通运输以及城市发展有着不可替代的作用。道路表面缺陷是道路状态的真实反映,准确地进行道路缺陷检测对道路状态检测和维护具有重要意义。道路缺陷分布具有不确定性,现阶段采用的人工检测方法存在检测效率低、检测周期长等缺点。针对目前道路表面缺陷检测中存在的问题,提出一种改进的Cascade R-CNN道路缺陷检测算法,引入了递归特征金字塔结构,使融合特征获得更多的语义信息细节,更利于小目标检测;选用ResNet50作为主干网络并进行改进,使其能够接受来自递归特征金字塔的特征输入。实验结果表明,改进后的算法在测试数据集上的表现优于Faster R-CNN、Grid R-CNN,检测精度和小目标检测能力均得到了提升。  相似文献   

7.
为了解决由于型钢表面缺陷形态多样、微小缺陷众多所带来的检测效率低与检测精度差的问题,提出一种基于可变形卷积与多尺度-密集特征金字塔的型钢表面缺陷检测算法——Steel-YOLOv3。首先,使用可变形卷积代替Darknet53网络部分残差单元的卷积层,从而强化特征提取网络对型钢表面多类型缺陷的特征学习能力;其次,设计了多尺度-密集特征金字塔模块:在原有YOLOv3算法的3层预测尺度上增加1层更浅层的预测尺度,再对多尺度特征图进行跨层密集连接,从而增强对密集微小缺陷的表征能力;最后,针对型钢缺陷尺寸分布特点,使用K-means维度聚类方法优化先验框尺寸并将先验框平均分配到4个对应预测尺度上。实验结果表明:Steel-YOLOv3算法具有89.24%的检测平均精度均值(mAP),与Faster R-CNN(Faster Region-based Convolutional Neural Network)、SSD(Single Shot MultiBox Detector)、YOLOv3和YOLOv5算法相比分别提高了3.51%、26.46%、12.63%和5.71%,且所提算法显著提升了微小剥落缺陷的检出率。另外,所提算法的每秒检测图像数量达到25.62张,满足实时检测的要求,可实际应用于型钢表面缺陷的在线检测。  相似文献   

8.
邓枭  叶蔚  谢睿  张世琨 《软件学报》2023,34(2):625-654
源代码缺陷检测是判别程序代码中是否存在非预期行为的过程,广泛应用于软件测试、软件维护等软件工程任务,对软件的功能保障与应用安全方面具有至关重要的作用.传统的缺陷检测研究以程序分析为基础,通常需要很强的领域知识与复杂的计算规则,面临状态爆炸问题,导致检测性能有限,在误报漏报率上都有较大提高空间.近年来,开源社区的蓬勃发展积累了以开源代码为核心的海量数据,在此背景下,利用深度学习的特征学习能力能够自动学习语义丰富的代码表示,从而为缺陷检测提供一种新的途径.搜集了该领域最新的高水平论文,从缺陷代码数据集与深度学习缺陷检测模型两方面系统地对当前方法进行了归纳与阐述.最后对该领域研究所面临的主要挑战进行总结,并展望了未来可能的研究重点.  相似文献   

9.
传统光学零件表面缺陷检测方法以缺陷位置信息检测为主,在位置信息融合过程中存在信息遗漏问题,影响最终的检测精准度。因此,设计基于深度学习的光学零件表面缺陷检测方法。首先,提取光学零件表面缺陷特征,分析光学零件透镜中心成像情况,剔除中心误差导致的缺陷,保留光学零件表面缺陷特征。其次,基于深度学习检测光学零件表面缺陷细节尺度,获取零件缺陷的细节信息,并通过深度学习拟合缺陷特征。最后,进行实验分析。实验结果表明,该方法的检测精准度更高,优于对照组。  相似文献   

10.
针对金属产品表面缺陷识别过程中,缺陷类型多样、大小形态各异等问题,提出了一种基于多尺度残差卷积网络的深度学习模型。该网络以Res Net50作为特征编码器提取具有不同分辨率的特征图以捕获多尺度特征信息,从而提高其识别不同尺寸缺陷的能力;同时采用多层感知机(Multi-Layer Perceptron, MLP)进行多尺度特征的自适应融合,将浅层卷积获取的图像纹理和边界等特征和深度卷积提取的复杂语义特征信息进行信息交互和特征细化,以提升网络模型识别性能。实验结果表明,文章所提出算法在NEU-DET数据集上准确率达到了98.06%,相比其他模型具有更高的识别精度。  相似文献   

11.
针对道路交通场景目标检测问题,提出采用EdgeBoxes算法和深度学习融合的非机动车辆目标检测方法,利用深度学习目标分类算法Fast R-CNN,结合VOC格式的非机动车辆数据样本,把道路交通场景中的目标检测问题实化为自行车(bicycle)和电动车(evbike)的分类问题。利用EdgeBoxes算法提取样本的目标建议构建适量的感兴趣区域,和样本一起输入网络进行迭代训练,同时引入正则化思想和微调策略进行网络优化,降低网络复杂度并避免过拟合现象;网络训练后得到非机动车辆目标检测模型,对模型进行新样本测试并分析测试效果。在道路交通场景目标检测中,基于EdgeBoxes算法和优化Fast R-CNN融合的方法与传统方法相比,检测准确度稍有提高,运算量明显降低,检测速度加快近一倍。  相似文献   

12.
在用于构建深度学习模型的深度学习框架中,算子的正确计算对于深度学习模型的正确预测至关重要.然而,已有的深度学习框架缺陷检测方法只能通过比较和推测的方式找到不同深度学习框架之间计算结果相差较大的算子,而且无法检测深度学习模型在训练过程中产生的计算错误,具有很大的局限性.针对此问题,本文设计并实现了基于元算子的深度学习框架...  相似文献   

13.
深度学习具有自主学习目标特征、识别率高、鲁棒性强等优点,当前基于深度学习的人体目标检测方法不能有效地适应目标的尺度变化。针对上述问题,提出多尺度多人的目标检测方法,将FPN特征金字塔分别与Faster R-CNN网络的两个阶段结合,同时,平衡RPN阶段产生的正负锚点的数量比例,并采用了更适合的锚点纵横比,对原始网络进行了一系列的优化。在标准数据集PETS 2009、Caltech和INRIA上的实验结果表明,提出的检测方法性能优于主流深度学习目标检测算法。  相似文献   

14.
目标检测作为计算机视觉的任务之一已经成为研究热点问题.目前,基于深度学习的目标检测算法层出不穷,但大多数情况下学者只关心它们的模型架构,而忽视了其训练过程.目标检测网络在训练过程中会存在明显的不平衡问题,导致模型检测性能降低,不能达到预期的最佳效果.不平衡问题主要包括两个层次,分别是特征图层次和目标函数层次.为了能够充...  相似文献   

15.
针对X光安检机人工审核图片存在的效率低、误检和漏检等问题,设计并实现了一套基于Mask R-CNN算法的X光图片智能审像系统.实现了X光图像采集、数据汇聚、分析处理、违禁物品自动检测、数据存储等功能.通过分析比较,选择ResNet101作为BackBone训练网络,选取6000张X光图片作为样本,对刀、枪、液体瓶、手机、充电宝等五类违禁品进行标注.对训练参数优化调整,训练出违禁品的Ma s k R-CNN模型.在测试集上使用COCO评估方法,检出违禁品的平均精准率mAP50达到了0.83,明显高于Faster R-CNN、YOLOv3、SSD513等算法,具有实际工程应用价值.  相似文献   

16.
深度卷积神经网络在处理自然图片时取得了非常好的效果,但鲜有针对工业应用领域的细分研究。本文探讨了深度学习模型在工业产品表面缺陷检测领域的应用。以Cp工业产品缺陷检测为着眼点,在设计检测方案时应用深度学习模型并辅助图像处理等相关技术,通过实验分析得到最佳应用模型。创新点在于提出了数据集信息密度这一概念,通过在多个数据集上...  相似文献   

17.
18.
为了解决小批量、多品种工业产品的表面质量检测问题,提出一种基于改进深度度量学习的缺陷检测算法.该算法对VGG16网络模型做改进,更有利于原始图像的隐空间映射.针对产品表面缺陷检测的任务,提出条件三元组损失函数以加强神经网络的拟合能力.同时,在隐空间中进行缺陷判定时,抛弃原始度量学习中基于KNN算法的归类方法,提出基于高...  相似文献   

19.
随着深度学习的发展,基于深度学习的车辆检测算法性能不断被提升,在构建智能交通体系方面发挥重要作用.单阶段目标检测模型因其检测速度的优越性,被广泛应用于车辆实时检测.为了综合分析基于深度学习的单阶段车辆检测算法相关改进及应用,分别对比了各类常用单阶段车辆检测算法,列举其改进措施以及在车辆检测方面存在的问题;重点阐述了基于...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号