首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
为了解决弱纹理重建难、资源消耗大和重建时间长等问题,提出了一种基于自适应聚合循环递归卷积的多阶段稠密点云重建网络,即A2R2-MVSNet(adaptive aggregation recurrent recursive multi view stereo net).该方法首先引入一种基于多尺度循环递归残差的特征提取模块,聚合上下文语义信息,以解决弱纹理或无纹理区域特征提取难的问题.在代价体正则化部分,提出一种残差正则化模块,该模块在略微增加内存消耗的前提下,提高了 3D CNN提取和聚合上下文语意的能力.实验结果表明,提出的方法在 DTU数据集上的综合指标排名靠前,在重建细节上有着更好的体现,且在BlendedMVS数据集上生成了不错的深度图和点云结果,此外网络还在自采集的大规模高分辨率数据集上进行了泛化测试.归功于由粗到细的多阶段思想和我们提出的模块,网络在生成高准确性和完整性深度图的同时,还能进行高分辨率重建以适用于实际问题.  相似文献   

2.
为提高植物叶片面积测量的准确度,本文提出了一种植物叶片三维重建补偿方法。该方法首先使用多角度拍摄植物叶片的方法来获取图像;其次,通过运动恢复结构算法(SFM)、聚类多视角立体算法(CMVS)和基于面片的多视角立体算法(PMVS)处理图像并生成三维点云;然后,对点云进行去噪、分割、填补、三角网格化处理;最后,对叶片面积进行估测。实验结果表明,本文方法测量叶片面积的准确度与扫描法接近,并且能解决由于叶片重叠产生的叶面积测量不准确的问题。  相似文献   

3.
钱超杰  杨明  戚明旭  王春香  王冰 《机器人》2019,41(4):464-472,492
在创建大场景稠密点云地图时,由于当前的各类环境3维测量系统难以兼顾大范围和高密度的点云测量要求,为此设计了一种基于摆动单线激光雷达的大场景稠密点云地图创建系统.首先,实现了大型激光雷达稳定精确的全向摆动.然后,给出了单点采集点云的拼接方法和多点采集点云的配准方法.最后,提出了一种3维点云投影密度的分析方法,并对仿真测量结果进行了对比与评价.实验结果表明,本系统的有效测量距离超过75 m、测量范围覆盖俯仰±45?、点云间距小于20 cm、点云分布均匀,装置的视野范围和点云分布可进行调节,并能通过多点配准对更大场景进行建图.  相似文献   

4.
点云是一种重要的三维数据表示形式,但其巨大的原始数据量阻碍了它在网络传输和存储记录等方面的应用.因此,本文提出了一种基于多尺度特征融合与软阈值残差结构的点云几何压缩网络,实现了对三维稠密点云的高效压缩.首先通过逐步融合多尺度特征和构建软阈值注意力机制,实现特征加强和冗杂特征的消除,以解决体素化过程中特征丢失等问题.此外,采用构建特征掩膜层的方法,加速模型收敛.最后,引入动态非等比例损失函数提高网络的学习效果.实验结果表明,该方法在MVUB、8iVFB和Owlii数据集上相较于现有方法同样的点云分辨率下,具有更高的点云重建质量和较快的编解码速度.  相似文献   

5.
基于稀疏点云的多平面场景稠密重建   总被引:1,自引:0,他引:1       下载免费PDF全文
缪君  储珺  张桂梅  王璐 《自动化学报》2015,41(4):813-822
多平面场景是生活中常见的一种场景,然而由于该类场景中常常存在物体表面纹理缺乏和纹理重复的现象,导致从多视图像重建获得的三维点云数据中存在点云过于稀疏甚至孔洞等问题,进而导致以微面片拟合三维点云所得到的重建表面出现平面颠簸现象.针对这些问题,本文提出了一种基于稀疏点云的分段平面场景重建方法.首先,利用分层抽样代替随机抽样,改进了J-Linkage多模型估计算法;然后,利用该方法对稀疏点云进行多平面拟合,来获得场景的多平面模型;最后,将多平面模型和无监督的图像分割相结合,提取并重建场景中的平面区域.场景中的非平面部分用CMVS/PMVS(Clustering views for multi-view stereo/patch-based multi-view stereo)算法重建.多平面模型估计的实验表明,改进的J-Linkage算法提高了模型估计的准确度.三维重建的实验证实,提出的重建方法在有效地克服孔洞和平面颠簸问题的同时,还能重建出完整平面区域.  相似文献   

6.
目的 3维点云是编码几何信息的主要数据结构,与2维视觉数据不同的是,点云中隐藏了3维物体中重要的形状特征。为更好地从无序的点云中挖掘形状特征,本文提出一种能够端到端且鲁棒地处理点云数据的多维度多层级神经网络(multi-dimensional multi-layer neural network,MM-Net)。方法多维度特征修正与融合(multidimensional feature correction and fusion module,MDCF)模块从多个维度自适应地修正局部特征和逐点特征,并将其整合至高维空间以获得丰富的区域形状。另一方面,多层级特征衔接(multi-layer feature articulation module,MLFA)模块利用多个层级间的远程依赖关系,推理得到网络所需的全局形状。此外设计了两种分别应用于点云分类与分割任务的网络结构MM-Net-C(multi-dimensional multi-layer feature classification network)和MM-Net-S(multi-dimensional multi-layer fe...  相似文献   

7.
点云的形状与曲线重建算法   总被引:1,自引:0,他引:1  
针对平面无序带噪点云的曲线重建问题,给出了点云形状的定义并提出了构造点云形状的算法.该算法基于Delaunay三角剖分,在构造好点云的Delaunay三角剖分后对三角剖分进行细化,使得在点云中的点周围形成空间上的局部均匀采样;基于集合论中的基本概念定义点云中内点、外点和边界点,并且明确地定义了点云的形状,根据Delaunay三角剖分细化时,选择不同的参数得到不同层次的点云的形状;选择合适的参数得到相应形状后,通过薄化过程得到具有流形结构的曲线.实验结果表明,采用文中算法得到的重建曲线很好地反映了点云的形状,验证了该算法的有效性.  相似文献   

8.
目前基于点云面的三维重建方法中,重建的区域性选择存在着两个问题:重建区域过大会导致目标物体不明确,效果不佳,运行时间长;重建区域过小会导致目标物体不完整,信息丢失。针对重建窗口过大时,本文采用改进的snake的区域性重建算法,即通过轮廓提取只对窗口内的目标物进行重建;针对重建窗口过小时,本文采用基于投影面的点云拼接算法,即通过重建后的点云进行拼接的方法使目标物体恢复完整。以上两点改进弥补了点云三维重建及拼接时出现的应用局限性和不稳定性,减少重建时间,提高重建有效性,鲁棒性。  相似文献   

9.
三维重建过程中获得的初始海量数据存在大量的噪声和孤立点,使得直接使用这些数据进行网格重建时,将会产生尖锐的凸出,导致重建效果不好,甚至是网格重建失败.针对以上问题,提出首先采用基于密度聚类的方法筛选三维点云,然后进行网格重建.实验表明本文算法获得了较好的网格重建效果.  相似文献   

10.
为了以由粗到精的方式实现点云形状补全,提出一个端到端的两阶段多尺度特征融合网络,其中的每个阶段都是由一个编码器-解码器构成.第1阶段中,首先利用点集抽取模块提取残缺点云的全局特征,在获取不同分辨率点特征的同时能关注更多的局部邻域特征,然后使用多层感知机作为解码器生成粗糙的点云骨架;第2阶段中,利用点云骨架和残缺点云提取多尺度局部特征,并通过注意力机制与第1阶段中的多尺度全局特征相互融合,使得每个点都包含全局和局部几何信息;最后将第2阶段中的全局特征和多尺度局部特征逐步进行上采样,并通过多层感知机生成精细的完整点云.采用倒角距离作为评价标准,在ShapeNet,MVP和Completion3D数据集上进行点云补全实验的结果表明,误差分别比基准网络降低17.1%,3.9%和13.9%,验证了所提网络的有效性.  相似文献   

11.
使用Kinect采集的深度数据,进行了轴类零件三维重建算法的研究。首先借助Kinect获取深度和彩色数据,通过坐标转换将深度信息转换成三维点云数据;其次提取出感兴趣目标的点云数据,根据点云数据的噪声特点,并对其进行滤波降噪处理;然后进行点云分割获得点云集,最后对各点云集进行结构参数化分析。实验结果表明,本文算法能够精确、高效地实现轴类零件的重建。  相似文献   

12.
从三维点云数据中提取实物的边界特征点,在以计算机视觉为基础的数字化曲面重建过程中有非常重要的意义。为提高精度,重建之前,必须对通过各种方法获得的大量原始散乱数据进行除噪及精简处理。基于此,提出了一种基于小波变换的激光测量扫描边界特征点提取算法,我们通过严格的理论推导,构造了一种类似mexh小波的小波基来对两种边界特征点进行检测。多次实验结果显示:该算法有效地避免了噪声和冗余数据的干扰,较精确地定位到了边界特征点,通过重建原始数据,准确地提取了三维实体的外型轮廓,同时也为实现冗余数据的精简提供了一种新的思想。  相似文献   

13.
针对三维重建中的点云配准问题,提出一种基于点云特征的自动配准算法。利用微软Kinect传感器采集物体的多视角深度图像,提取目标区域并转化为三维点云。对点云进行滤波并估计快速点特征直方图特征,结合双向快速近似最近邻搜索算法得到初始对应点集,并使用随机采样一致性算法确定最终对应点集。根据奇异值分解法求出点云的变换矩阵初始值,在初始配准的基础上运用迭代最近点算法做精细配准。实验结果表明,该配准方法既保证了三维点云的配准质量,又降低了计算复杂度,具有较高的可操作性和鲁棒性。  相似文献   

14.
随着激光扫描测量技术的发展,其数据测量精度的逐渐增高使得获取的几何模型表面点云数据的细节信息越丰富,能更准确的反应物体几何表面特征,但如此海量的点云数据同时也带来对应的技术挑战,海量的点云数据在计算机文件存储、数据后期进一步处理以及软件可视化方面都不方便且效率低下.本文中的算法首先采用栅格法对点云进行空间划分及领域关系的建立,其次利用局部表面拟合的方法估算点云法向量,然后利用点云K领域法的向量求解坐标点的显著性值,最后根据显著性的值构建点云八叉树.该算法实现了对点云显著性特征的提取和对点云数据量的进一步简化,它不仅保留了对点云细节特征保持方面的优势,而且在时间效率上得到了提高.  相似文献   

15.
一种基于小波的轮廓特征提取算法   总被引:3,自引:0,他引:3       下载免费PDF全文
从大量含有噪声的3维点云数据中提取实物的边界特征,在以计算机视觉为基础的数字化曲面重建过程中有非常重要的意义。为提高重建精度,需要首先对大量原始散乱数据进行除噪及精简处理,但常规的数据处理方法由于没有区分噪声和特征点,因而使重建精度大大降低。为了准确的进行轮廓特征提取,提出了一种基于小波变换的激光测量扫描表面轮廓特征提取算法,并通过严格的理论推导,构造了一种类似m exh小波的小波基用来对两种边界特征点进行检测。多次实验结果显示,该算法不仅有效地避免了噪声和冗余数据的干扰,较精确地定位到了边界特征点,而且通过重建原始数据,较准确地提取了3维实体的外形轮廓,同时也为实现冗余数据的精简提供了一种新思想。  相似文献   

16.
针对机器人在复杂的室内环境中,因提取特征点低效率、高失真造成性价比较低的问题,提出一种改进的SIFT特征点提取与匹配算法,并在此基础上构建基于Kinect的SLAM系统。SLAM系统前端对SIFT特征点提取法进行改进,使用高斯分离模糊函数,提高SIFT算法提取特征点的速度,并且使用RANSAC筛选不稳定特征点。本文所提出的改进型SIFT特征点提取法的SLAM系统可以对复杂与空旷的室内环境高效率、低失真的重构。  相似文献   

17.
针对三维点云在采用传统泊松算法进行网格化重建时,重建时间较长并且最终重建出的模型存在孔洞和局部细节缺失等问题,提出一种基于点云增强的网格化优化算法.该算法首先通过统计滤波对初始点云进行降噪处理,为了在保证细节特征的基础上提高重建效率,在通过体素滤波进行适当点云降采样的同时利用双三次样条插值进行点云孔洞修复,然后将移动最...  相似文献   

18.
本文在二维指纹识别技术的基础上,结合多目摄像头数据模型进行指纹采集的三维重建。采用指纹特征点坐标场和方向场进行表征,利用二维指纹特征点的空间映射来获得三维指纹特征点空间特征坐标,由局部四邻域法计算坐标方向场,在指纹匹配中,基于双参考点法进行指纹的空间特征点对齐,由欧氏距离和方向夹角进行特征点配对。实验结果表明,本文提出的指纹三维重建技术以及指纹特征点的提取和匹配,能够最大限度获取三维指纹特征信息,保证指纹特征识别精度,为刑事案件侦破提供有力的技术支持。  相似文献   

19.
本文针对无人机图像点云道路缺陷检测问题, 提出了一种基于点云切片平面拟合与聚类的道路缺陷检测方法. 首先, 采集无人机图像进行三维重建生成图像点云, 对点云进行坡度滤波与统计离群点滤波, 消除噪声和异常点的干扰. 然后, 对点云进行切片并利用随机采样一致性平面拟合算法估计道路的平面模型. 随后, 运用点云DBSCAN聚类算法分类出边缘噪声与道路损伤点云. 最后, 采用点云切片法估计损伤程度. 在实验中, 我们使用真实无人机采集的点云数据, 并与基于点云垂直度特征检测方法进行了对比. 实验结果表明, 本文方法表现出较高的准确性和鲁棒性, 体积估计的误差为1307 cm3. 相较于传统方法, 本文方法能够更精确地检测出道路损伤, 并能适应复杂的道路形状变化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号