共查询到18条相似文献,搜索用时 31 毫秒
1.
针对SSD算法在检测目标过程中对小目标检测效果差的缺陷,提出了特征融合的SSD方法。该方法充分融合深浅层特征信息以提升网络模型对小目标的检测能力,为更好地检测小目标,将先验框尺寸相对原图比列进行调整,同时对SSD模型相应超参数值进行调整。实验结果表明,检测精度mAP较SSD提高3.4个百分点,对小目标Bottle、Chair、Plant检测精度分别提升8.7个百分点、3.4个百分点和7.1个百分点。检测精度mAP较当前一系列性能优异的目标检测算法有显著提高。通过拓展实验进一步证明改进算法成功检测到了大多数SSD算法没有检测到的小目标,提高了平均检测准确率。 相似文献
2.
吴钟仁;周莲英;丁腊春 《计算机与数字工程》2025,(1):115-118+175
针对目前主流目标检测算法SSD算法对小目标检测精度不高的问题,提出了一种基于双向特征融合和轻量级特征增强的改进算法。该算法特征融合模块通过深度可分离卷积和上采样操作构建双向网络通道进行特征融合,使得来自主干网络不同尺度特征层的细节表观信息和高维语义信息能够更加充分地融合;算法特征增强模块采用了注意力机制和特征图拼接方法,注意力机制通过权重分配,使得模型聚焦于目标区域而非背景。特征图拼接仅对部分通道卷积能够在保证检测速度的前提下,增加特征层的语义信息。通过组合这两个部分的输出,能够实现对输入特征的双增强。实验说明了其有效性:在HRRSD小目标数据集上,BiLFE-SSD相较SSD算法指标mAP提高了11.1%。 相似文献
3.
SSD是一种多尺度目标检测算法,由于浅层特征图缺乏语义信息,导致小目标的检测准确率低.针对这个问题,提出一种融合特征增强和自注意力的SSD小目标检测算法FA-SSD.该算法在SSD基础上构建一条自深向浅的递归反向路径,此路径包含三个模块:深层特征增强模块利用路径深层多尺度特征图生成的上下文信息和最深层特征图的语义信息,... 相似文献
4.
特征增强的SSD算法及其在目标检测中的应用 总被引:1,自引:0,他引:1
针对多尺度单发射击检测(SSD)算法不同尺度的特征层很难进行融合互补问题,提出一种特征增强的SSD(FE-SSD)算法.首先对SSD算法的金字塔特征层中,每一尺度的特征进行尺寸不变的卷积操作;然后将卷积前与卷积后的特征进行特征融合操作,进而产生一组新的金字塔特征层;最后在新产生的金字塔特征层上执行目标的检测与定位任务.在PASCALVOC2007公共数据库上进行实验,当输入图像尺寸为300×300时,检测精度(mAP)达到78.0%,检测速度(FPS)达到82.5帧/s.此外,在拓展实验中,文中算法对图像中模糊目标的检测效果也优于SSD算法. 相似文献
5.
为了满足海洋生物检测对精度和实时性的要求,提出了一种基于改进SSD算法(single shot multibox detector)的海洋生物检测算法.针对SSD算法浅层特征层语义信息不足、小目标检测效果差等问题,设计了特征融合模块和特征增强模块.特征融合模块通过融合不同特征层,丰富了浅层特征层的语义信息以及深层特征层... 相似文献
6.
《计算机科学与探索》2019,(6):1049-1061
提出了一种改进的多尺度卷积特征目标检测方法,用以提高SSD(single shot multibox detector)模型对中目标和小目标的检测精确度。该方法先对SSD模型低层特征层采用区域放大提取的方法以提高对小目标的检测能力,再对高层特征层进行特征提取以改善中目标的检测效果。最后,利用SSD模型中原有的多尺度卷积检测方法,将改进的多层特征检测结果进行融合,并通过参数再训练以获得最终改进的SSD模型。实验结果表明,该方法在MS COCO数据集上对中目标和小目标的测试精确度分别为75.1%和40.5%,相比于原有SSD模型分别提升16.3%和23.1%。 相似文献
7.
针对当前SSD算法低层特征图语义信息不足导致存在小目标漏检以及误检的问题,提出一种基于分段反卷积改进SSD的目标检测算法SD-SSD(Segmented Deconvolution-Single Shot MultiBox Detector).根据SSD模型低层特征图语义信息提取不足,高层特征图边缘信息丢失过多,本文重... 相似文献
8.
由于小目标的低分辨率和噪声等影响,大多数目标检测算法不能有效利用特征图中小目标的边缘信息和语义信息,导致其特征与背景难以区分,检测效果差。为解决SSD(single shot multibox detector)模型中小目标特征信息不足的缺陷,提出反卷积和特征融合的方法。先采用反卷积作用于浅层特征层,增大特征图分辨率,然后将SSD模型中卷积层conv11_2的特征图上采样,拼接得到新的特征层,最后将新的特征层与SSD模型中固有的4个尺度的特征层进行融合。通过将改进后的方法与VOC2007数据集和KITTI车辆检测数据集上的SSD和DSSD方法进行比较,结果表明:该方法降低了小目标的漏检率,并提升整体目标的平均检测准确率。 相似文献
9.
针对SSD(single shot multibox detector,单步多盒检测)算法在车辆的自动紧急制动(AEB)中对远方目标检测效果差、检测速度慢、对硬件资源需求高的问题,提出了一种基于SSD的改进算法.首先用MobileNetv2替换SSD中的AGG-16作为检测网络,以减少参数数量和计算量,降低网络对硬件性... 相似文献
10.
针对现阶段目标检测领域中小目标由于特征信息匮乏而难以检测的问题,提出了一种基于SSD(Single Shot multibox Detector)算法的改进小目标检测算法(CS-SSD)。首先,以特征金字塔中不同大小的感受野表达出的不同特征信息为基础,在SSD算法的主干框架上增加了环境上下文特征融合模块以及自顶向下的语义特征融合模块,为小目标提供环境上下文和语义特征信息;然后,在SSD算法的检测层上增加基于残差结构的检测头,从而充分利用融合后的特征以提高检测精度;最后,使用一种受人类学习方式启发的分阶段网络训练算法来缓解小目标与中大型目标在网络训练中损失不平衡问题。在VOC07+12数据集上进行实验,CS-SSD算法的平均检测精度(mAP)达到了82.00%,相较于SSD算法提升了2.08个百分点;同时小目标平均检测精度相较于SSD算法提升了7.87个百分点。实验结果表明,CS-SSD算法能充分融合网络中的环境上下文和语义特征信息以达到提高小目标检测精度的效果。 相似文献
11.
12.
为提高SSD算法检测目标的能力,提出了一种对多尺度特征图进行分类再提取的目标检测算法.该算法将SSD特征金字塔中多个不同尺度的特征图分为低层和高层两类特征图.针对低层特征图所处位置网络深度不够导致的特征表示能力不足,设计了SFE(Shallow Feature Enhancement)模块提取特征从而增加网络深度,最终... 相似文献
13.
为解决目前目标检测算法在微小行人的识别与定位过程中准确率较低的问题,提高微小行人检测能力,提出一种基于自适应融合与特征细化的微小行人检测算法AF-RetinaNet.首先,将特征增强模块与ResNet相结合构建特征提取网络,采用并行结构获得增强特征;其次,使用上下文自适应学习模块,通过获得目标上下文的特征信息,从而关注相似特征的差异性,缓解误检问题;最后,构造具有图像超分思想的特征细化模块,对目标特征信息进行放大重构,优化小目标的特征表达能力,缓解漏检问题.在TinyPerson数据集上,AF-RetinaNet算法的检测精度达到56.78%,漏检率达到85.38%.与基于RetinaNet算法的研究基准相比,检测精度提高5.57%,漏检率降低3.67%.实验结果表明,该模型能有效提高对微小行人的检测和识别精度. 相似文献
14.
为解决无人机高空拍摄面临的小目标聚集不易识别、可提取特征少的问题,提出一种特征空间与坐标卷积结合的小目标检测算法。在YOLOv5网络架构中加入特征空间模块(feature spatial model,FSM),利用卷积为不同特征的感受野分配自适应权重,增强主干网络特征提取能力;将坐标卷积模块(coordinate convolution model,CCM)嵌入模型颈部,精准定位目标所在位置,提高密集场景下小目标检测精度;删减原始层并添加小目标检测层,减少语义损失,充分提取浅层特征图中信息,强化高空图像中微小目标检测性能。实验结果表明,在VisDrone2019数据集上,改进后模型的精确率较YOLOv5提高4.1个百分点,mAP@0.5和mAP@0.5:0.95分别提高4.6个百分点和3.2个百分点,从而验证了提出模型在无人机检测小目标场景中具备有效性。 相似文献
15.
针对目前在遥感目标检测领域广泛使用的YOLOv3算法存在对小目标物体的特征表达能力不足,检测效果不好的问题,本文提出一种改进的YOLOv3小目标检测算法.首先,引入全局信息注意力机制并改进特征提取网络和特征金字塔结构,提高模型小目标特征提取能力和检测能力;其次,对数据集进行单尺度Retinex融合特征增强,提高模型对小目标特征的学习效果;最后,使用自适应锚框优化算法对anchors进行优化,提高anchors和目标的匹配程度.选用遥感数据集RSOD进行实验,本文算法的全类平均精度为92.5%,相比经典YOLOv3算法,提高10.1%,对遥感小目标的检测效果得到明显提升. 相似文献
16.
朱永军;蔡光琪;韩进;缪燕子;马小平;焦文华 《工矿自动化》2025,51(4):93-99
露天矿小目标检测任务面临视角广、检测距离远导致目标成像小的挑战,现有目标检测模型存在图像逐层下采样操作引发的特征衰减问题。针对该问题,提出了一种改进YOLOv11模型,并将其用于露天矿复杂背景下小目标检测。改进YOLOv11模型通过引入鲁棒特征下采样(RFD)模块替换跨步卷积下采样模块,有效保留了小目标的特征信息;设计了小目标特征增强颈部(STFEN)网络替代原有特征金字塔结构的颈部网络,在模型颈部引入跨阶段部分融合模块,整合来自不同层级的特征图;将原有的CIoU损失函数替换为Powerful−IoU(PIoU)损失函数,解决了训练过程中锚框膨胀问题,使模型快速精准聚焦小目标。在露天矿区小目标数据集上的实验结果表明:① RFD模块使模型参数量减少的同时mAP提升了1.5%;STFEN网络虽使模型参数量有所增加,但mAP提升了2.2%;PIoU损失函数在未改变模型参数量及每秒浮点运算次数的前提下使mAP提升了1.7%;三者联合应用最终使模型mAP提升了3.9%。② 改进YOLO11模型在保持较高推理速度的同时实现了精度提升,其mAP较YOLOv5m,YOLOv8m,YOLOv11m和RtDetr−L分别提高了2.6%,1.5%,0.9%和2.2%,且模型参数量更小,易于边缘部署。 相似文献
17.
Shudi Wang Manman Xu Ying Sun Guozhang Jiang Yaoqing Weng Xin Liu Guojun Zhao Hanwen Fan Jun Li Cejing Zou Yuanmin Xie Li Huang Baojia Chen 《Concurrency and Computation》2023,35(2):e7491
As the development of deep learning and the continuous improvement of computing power, as well as the needs of social production, target detection has become a research hotspot in recent years. However, target detection algorithm has the problem that it is more sensitive to large targets and does not consider the feature-feature interrelationship, which leads to a high false detection or missed detection rate of small targets. An small target detection method (C-SSD) based on improved SSD is proposed, that replaces the backbone network VGG-16 of the SSD network with the improved dense convolution network (C-DenseNet) network to achieves further feature fusion through fast connections between dense blocks. The Introduction of residuals in the prediction layer and DIoU-NMS further improves the detection accuracy. Experimental results demonstrate that C-SSD outperforms other networks at three different image scales and achieves the best performance of 83. A 8% accuracy on the PASCAL VOC2007 test set, proving the effectiveness of the algorithm. C-SSD achieves a better balance of speed and accuracy, showing excellent performance in rapid detection of small targets. 相似文献
18.
针对现有井下定位方法定位精度波动较大、难以进一步提高的问题,提出一种基于井下移动图像采集的目标识别与精确定位方法。利用定位目标携带的摄像机采集环境图像,通过自适应直方图均衡化方法对采集到的原始图像进行预处理,采用深度学习技术SSD算法、数据增强SSD算法识别井下标志目标,并采用基于小孔成像原理的单目测距方法进行测距和定位。实验结果表明:与灰度图像匹配算法和特征图像匹配算法2种传统算法相比,SSD算法对距离和角度变化的适应能力更好,距离为45 m时有效检测率仍达892%;数据增强SSD算法提高了鲁棒性,检测精确率比SSD算法高17%,可以更好地适应复杂环境。井下应用结果表明,基于井下移动图像采集的目标识别与精确定位方法在2~10 m范围内可得到较理想的效果,随着距离增加,测量精度有所下降。 相似文献