共查询到19条相似文献,搜索用时 62 毫秒
1.
2.
3.
为解决传统推荐系统中的数据稀疏、关联性差、冷启动等方面的问题,有学者提出将社交中的信任关系引入推荐系统形成社会化推荐机制.这在一定程度上提高了推荐精度,但是显式信任信息很难获取并且现有的信任信息非常稀疏.针对加入用户信任信息算法的不足之处,提出了融入用户隐式信任的协同过滤推荐算法模型FITrustSVD,该模型是在Tr... 相似文献
4.
传统基于用户的协同过滤推荐算法在计算用户之间的相似度时只考虑了用户的评分,而忽略了不同项目之间的差异。针对传统方法在数据稀疏情况下表现不理想的缺点,提出了结合项目标签信息针对每个目标项为用户选择邻居的协同过滤推荐算法。算法首先基于用户评分矩阵确定最初的近邻,为每个目标项计算目标用户的邻居;当对目标项目评分的近邻数量极小或没有时,则考虑增加由标签信息拓展的近邻;最后根据近邻为目标项目预测评分。实验结果表明,该算法提高了相似性计算的准确性,有效地缓解了用户评分数据稀疏的问题,并提高了预测的准确性。 相似文献
5.
协同过滤推荐算法由于其推荐的准确性和高效性已经成为推荐领域最流行的推荐算法之一。该算法通过分析用户的历史评分记录来构建用户兴趣模型,进而为用户产生一组推荐。然而,推荐系统中用户的评分记录是极为有限的,导致传统协同过滤算法面临严重的数据稀疏性问题。针对此问题,提出了一种改进的嵌入LDA主题模型的协同过滤推荐算法(ULR-CF算法)。该算法利用LDA主题建模方法在用户项目标签集上挖掘潜在的主题信息,进而结合文档-主题概率分布矩阵和评分矩阵来共同度量用户和项目相似度。实验结果表明,提出的ULR-CF算法可以有效缓解数据稀疏性问题,并能显著提高推荐系统的准确性。 相似文献
6.
大多数利用标签与用户和项目之间关系的推荐算法,都要面临用户个体不同所导致的标签稀疏问题,不同的用户为项目所标注的标签会有所不同.针对由于用户标注标签的随意性而导致的用户标签和项目标签矩阵稀疏问题,提出了一种标签扩展的协同过滤推荐算法.该算法根据用户标注标签的行为计算基于标签的标签相似度,根据用户标注的标签语义计算基于标签语义的标签相似度,从用户行为和标签语义2个方面评估标签的相似度,并利用标签相似度来扩展每个项目标签,降低由项目与标签的关联关系产生的矩阵稀疏度.在M ovieLens数据集上的实验结果表明,所提算法在精度上有所提高. 相似文献
7.
针对目前融合显隐式反馈的推荐算法发展仍存在显式反馈数据利用不合理、隐式反馈缺乏负反馈样本等问题,本研究基于融合显隐式反馈的SVD++算法和针对正负反馈的PSVD算法的核心思想,根据全反馈思想进行正负反馈层面上的尝试,利用基准预测思想在显隐式反馈中建立正负反馈的区分标准,优化显式反馈对于获取正负样本的评价公式,建立隐式反... 相似文献
8.
协同过滤推荐算法通常基于物品或用户的相似度来实现个性化推荐,但是数据的稀疏性往往导致推荐精度不理想。大多数传统推荐算法仅考虑用户对物品的总体评分,而忽略了评论文本中用户对物品各个属性面的偏好。该文提出一种基于情感分析的推荐算法SACF(reviews sentiment analysis for collaborative filtering),该算法在经典的协同过滤推荐算法的基础上,考虑评论文本对相似度计算的影响。SACF算法利用LDA主题模型挖掘物品潜在的K个属性面,通过用户在各个属性面上的情感偏好计算用户相似度,从而构建推荐模型。基于京东网上评论数据集的实验结果表明,SACF算法不但可以有效地改善传统协同过滤推荐算法中数据稀疏性的问题,而且提高了推荐系统的精度。 相似文献
9.
针对传统协同过滤推荐算法中由于相似度计算导致推荐精度不足的问题,提出一种基于标签权重相似度量方法的协同过滤推荐算法。首先,通过改进当前算法中标签权重的计算,并构成用户-标签权重矩阵和物品-标签权重矩阵;其次,考虑到推荐系统是以用户为中心进行推荐,继而通过构建用户-物品关联矩阵来获取用户对物品最准确的评价和需求;最后,根据用户-物品的二部图,利用物质扩散算法计算基于标签权重的用户间相似度,并为目标用户生成推荐列表。实验结果表明,与一种基于"用户-项目-用户兴趣标签图"的协同好友推荐算法(UITGCF)相比,在稀疏度环境为0.1时该算法的召回率、准确率和F1值分别提高了14.69%、9.44%、17.23%。当推荐项目数量为10时,三个指标分别提高了17.99%、8.98%、16.27%。结果表明基于标签权重的协同过滤推荐算法可有效提高推荐结果。 相似文献
10.
针对传统推荐算法在相似性计算和评分预测方法中存在预测精度和稳定性的不足,为进一步提高算法精确度和稳定性,提出一种新的推荐算法。首先,依据各项目的重要标签的数量,计算出项目间M2相似性,依据该相似性构成该项目的邻近项目集;然后,参考Slope One加权算法思想,定义了新的评分预测方法;最后,使用该评分方法基于邻近项目集对用户评分进行预测。为了验证该算法的准确性和稳定性,在MovieLens数据集上与基于曼哈顿距离的K-最近邻(KNN)算法等传统推荐算法进行了对比,实验结果表明该算法与KNN算法相比平均绝对误差下降7.6%,均方根误差下降7.1%,并且在稳定性方面也更好,能更准确地为用户提供个性化推荐。 相似文献
11.
R树是一个高度平衡树,也是目前应用最为广泛的空间索引结构.本文以用户行为的历史数据之间的相似度构造R树,提出一种基于R树的协同过滤推荐算法(R_CF);另外,从用户的隐式反馈着手,构建用户兴趣行为数据模型,并进行数据标准化处理.仿真实验表明:较之传统的协同过滤推荐算法(CF),本文提出的R_CF算法可以极大提升推荐top-n个相似度最高的用户时的查询速度. 相似文献
12.
介绍了协同过滤算法,并对算法进行了改进,解决了用户稀疏的情况下传统算法的不足,同时通过引入评分阈值,显著提高了个性化协同过滤算法的推荐精度。 相似文献
13.
14.
提出一种基于新闻时效性的协同过滤推荐算法. 首先对新闻的时效性进行了特征分析, 建立了新闻时效性模型, 然后结合新闻时效性改进了基于用户的协同过滤算法. 最后进行了仿真实验, 实验结果表明, 该方法可以有效提高推荐算法的性能, 改善新闻推荐准确度和召回率. 相似文献
15.
推荐系统在电子商务中应用广泛,协同过滤是推荐系统中应用最为成功的推荐技术之一。随着电子商务系统数据不断增加,用户-项目评分矩阵稀疏性问题日趋明显,成为推荐系统的瓶颈。本文提出基于LDA的协同过滤改进算法,提升稀疏评分矩阵下的推荐质量。首先,根据用户与项目评分矩阵,建立LDA模型,得到用户-项目概率矩阵,作为协同过滤的原始数据;然后根据属性对项目聚类,对用户-项目概率矩阵进行裁剪;最后,考虑上下文信息,在传统协同过滤相似度计算基础上,通过引入时间因子函数改进相似度计算公式。在Movie Lens数据集上的实验结果表明,本文提出模型的MAE指标优于传统协同过滤算法。 相似文献
16.
针对传统基于单分类的推荐算法容易陷入单指标最优的困境和推荐精度低的问题,提出一种融合K-最近邻(KNN)和Gradient Boosting(GBDT)的协同过滤推荐算法.该算法利用K-最近邻法过滤出目标用户的多组候选最近邻居集,并综合集成学习的优点,采用多分类器对多组推荐结果进行集成.在相似度计算公式中引入了若只... 相似文献
17.
显式反馈与隐式反馈相结合,可以有效提升推荐性能.但是现有的融合显式反馈与隐式反馈的推荐系统存在未能发挥隐式反馈数据缺失值反映用户隐藏偏好的能力,或者未能保留显式反馈数据反映用户偏好程度的能力的局限性.为了解决这个问题,提出了一种融合显式反馈与隐式反馈的协同过滤推荐算法.该算法分为两个阶段:第1阶段利用加权低秩近似处理隐式反馈数据,训练出隐式用户/物品向量;第2阶段引入了基线评估,同时将隐式用户/物品向量作为补充,通过显隐式用户/物品向量结合,训练得出用户对物品的预测偏好程度.该算法与多个典型算法在标准数据集上进行了实验比较,其可行性和有效性得到验证. 相似文献
18.
19.
针对协同过滤推荐算法在数据稀疏性及在大数据规模下系统可扩展性的两个问题, 在分析研究Hadoop分布式平台与协同过滤推荐算法后, 提出了一种基于Hadoop平台实现协同过滤推荐算法的优化方案. 实验证明, 在Hadoop平台上通过MapReduce结合Hbase数据库实现算法, 能够有效地提高协同过滤推荐算法在大数据规模下的执行效率, 从而能够进一步地搭建低成本高性能、动态扩展的分布式推荐引擎. 相似文献