首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
为了解决由于型钢表面缺陷形态多样、微小缺陷众多所带来的检测效率低与检测精度差的问题,提出一种基于可变形卷积与多尺度-密集特征金字塔的型钢表面缺陷检测算法——Steel-YOLOv3。首先,使用可变形卷积代替Darknet53网络部分残差单元的卷积层,从而强化特征提取网络对型钢表面多类型缺陷的特征学习能力;其次,设计了多尺度-密集特征金字塔模块:在原有YOLOv3算法的3层预测尺度上增加1层更浅层的预测尺度,再对多尺度特征图进行跨层密集连接,从而增强对密集微小缺陷的表征能力;最后,针对型钢缺陷尺寸分布特点,使用K-means维度聚类方法优化先验框尺寸并将先验框平均分配到4个对应预测尺度上。实验结果表明:Steel-YOLOv3算法具有89.24%的检测平均精度均值(mAP),与Faster R-CNN(Faster Region-based Convolutional Neural Network)、SSD(Single Shot MultiBox Detector)、YOLOv3和YOLOv5算法相比分别提高了3.51%、26.46%、12.63%和5.71%,且所提算法显著提升了微小剥落缺陷的检出率。另外,所提算法的每秒检测图像数量达到25.62张,满足实时检测的要求,可实际应用于型钢表面缺陷的在线检测。  相似文献   

2.
针对轧刚表面缺陷种类多样、形状多变导致检测效率低、精度差的问题,提出了一种改进YOLOv3的轧钢表面缺陷检测算法。首先,对骨干网络提取的特征采用PSA金字塔拆分注意力模块进行多尺度融合。其次,采用PAN结构代替FPN,使得浅层语义和深层语义的特征能充分融合。接着采用Decoupled_Head,将回归预测和逻辑预测分离以避免之间的干扰。最后,在损失函数方面,根据真实框大小赋予不同权值,以提高网络对小目标的检测效果。实验表明改进后的YOLOv3在NEU-DEU数据集上的平均检测精度为80.01%,比原始的YOLOv3提高了3.05%,且相较于YOLOx、YOLOv5等算法也有较大的检测精度优势。  相似文献   

3.
近年来,随着我国制造业的快速发展,铝材的需求量日益增长。然而,铝材在生产过程中会出现不同类型的缺陷,这些缺陷影响铝材的质量、美观度和使用寿命。为实现快速、准确地识别铝片表面缺陷,基于YOLOv5网络提出了一种改进的铝片表面缺陷检测方法。为了提高检测模型的特征提取和特征融合能力,引入注意力机制CBAM模块,协助模型关注和提取更有用的特征信息。在回归损失方面,采用Alpha-IoU函数来替代原来的CIOU损失函数,降低预测框的回归损失,提升定位精度。通过实验验证,该方法能够有效识别铝片表面的缺陷类型和位置,具有较高的实用价值。  相似文献   

4.
5.
针对YOLOv3目标检测算法在风机叶片表面缺陷检测任务中存在易产生冗余框和漏检等问题,提出了一种基于全局上下文(Global Context,GC)注意力机制的风机叶片表面缺陷检测方法,简称GC-YOLOv3。该方法通过对YOLOv3的特征提取网络Darknet53中的残差块嵌入全局上下文注意力模块,使得模型能够重点关注缺陷所在位置区域,达到有效减少冗余框和降低漏检风险的目的。实验结果表明,GC-YOLOv3相比于YOLOv3准确率提升了3.38%。同时,与基于Squeezeand-Excitation和Non-local的注意力机制相比,使用全局上下文注意力机制的模型检测精度更高。  相似文献   

6.
缺陷检测是生产中重要的环节,基于钢板表面缺陷特征不明显和难以提取导致的检测精度不足问题,文章在YOLOv5s检测网络的基础上进行改进,首先基于DO-Conv过参数化模块改进网络特征提取模块,然后使用ULSAM注意力机制改进网络的颈部(Neck),提出改进的YOLOv5s缺陷检测网络。基于NEU-DET数据集的实验结果表明,改进的YOLOv5s缺陷检测网络检测平均准确率达76.6%,较YOLOv5s和YOLOv4分别提升了7.8%和6.3%,有效提高了钢材表面缺陷检测精度。  相似文献   

7.
两段式缺陷检测模型中分割和分类网络的优化目标不一致,导致二者耦合性较差,且分割模块误差的积累可能进一步弱化分类模块的性能.针对上述问题,提出一种基于注意力机制的缺陷检测联合优化算法.首先基于混合注意力特征融合模块的分割网络融合浅层特征和深层特征,提取更全面的缺陷位置信息;然后基于多感受野空间注意力模块的分类网络挖掘更具判别性的缺陷类别特征;最后通过联合优化目标实现分割和分类网络的学习优化,提升整个算法的耦合性以及性能.基于PyTorch框架,在公开工业缺陷检测数据集DAGM 2007, MAGNETIC-TILE和KolektorSDD2数据集上进行实验,并引入分段式算法及类U-Net算法进行横向对比的结果表明,所提算法的准确率相比分段式算法最高提升28.02%,相比类U-Net算法最高提升8.3%,且精确率、召回率、F1值均优于同类算法,具有更好的检测性能.  相似文献   

8.
针对当前YOLOv5算法检测钢材表面缺陷精度不高、速度慢等问题,提出一种基于多尺度轻量化注意力的YOLO-Steel钢材表面缺陷检测方法.首先,提出一种轻型通道注意力模块,仅需少量计算成本即可有效关注重要通道;然后,利用空洞卷积扩大感受提出一种轻型空间注意力模块,能够在空间维度上提取有价值信息;接着,提出金字塔注意力结构,利用多级池化放缩特征图在不同分辨率特征图上使用空间注意力模块学习其空间依赖信息,对多级特征图使用通道注意力模块重构其通道相关信息,改善检测效果.实验结果表明,YOLO-Steel在钢材表面缺陷数据集上平均精度均值(mAP)可达77.2%,比YOLOv5s算法提高1.8%,模型时间、空间复杂度与YOLOv5s基本持平,在保证检测速度的基础上能够有效提高精确度.  相似文献   

9.
深度学习在缺陷检测方面具有优越性能,然而在工业应用过程中由于缺陷概率低,无缺陷图像的检测过程占据了大部分计算时间,严重限制了整体上的有效检测速度。针对上述问题,提出一种基于级联网络的型钢表面缺陷检测算法SDNet。该算法分为两个阶段:预检阶段和精检阶段。预检阶段采用基于深度可分离卷积(DSC)以及多尺度并行卷积的轻量化ResNet预检网络,判断型钢表面图像是否存在缺陷;精检阶段以YOLOv3作为基准网络对图像中的缺陷进行准确分类与定位,并在主干特征提取网络以及预测分支中引入改进空洞空间金字塔池化(ASPP)模块以及对偶注意力模块,以提升网络的检测性能。实验结果表明,SDNet在1 024像素×1 024像素图像上的检测速度达到每秒120.63帧,准确率达到92.1%。与原YOLOv3算法相比,所提算法的检测速度是原YOLOv3算法的3.7倍,检测精度提高了10.4个百分点,可应用于型钢表面缺陷的快速检测。  相似文献   

10.
在电机磁瓦生产中可能因生产工艺不可避免产生残次品从而影响电机质量,因此对电机磁瓦质量进行挑选,去除残次品,成为电机磁瓦生产中的必须工序。为解决传统图像处理检测能力弱、效率低且检测精准度低等问题,在ResNet-50的网络结构基础上,提出一种融合多重注意力机制残差网络的电机磁瓦缺陷检测网络模型。该目标检测网络结合卷积网络和注意力机制(Convolutional Block Attention Module, CBAM)构建了一种可以和网络进行端到端训练的非降维通道注意力和空间注意力串联模块,以建立特征之间的空间相关性,增强网络性能。在电机磁瓦数据集上的实验结果表明,改进的目标检测网络在电机磁瓦缺陷图像的全类别平均准确率mAP达到96.92%,所提算法的mAP值较原始ResNet-50网络算法提升了2.17%。验证了所提算法对电机磁瓦缺陷检测任务的有效性。  相似文献   

11.
钢材表面缺陷对于钢材行业来说是一个巨大的挑战。针对传统的钢材缺陷检测方法存在着效率低、检测精度不高等问题,基于YOLOv7设计了一种AFSD-YOLOv7模型进行实时的钢材表面缺陷检测。首先,在YOLOv7模型中使用一种轻量化卷积结构替换标准卷积结构,,以加速模型的推理过程;然后采用快速空间金字塔池化结构替换原始空间金字塔池化结构,以加速网络的特征提取过程;最后添加改进的ECA-Net注意力机制,以提升模型检测精度。实验结果表明,AFSD-YOLOv7能够对钢材缺陷进行有效识别,相比YOLOv7模型,计算量减少了54.8%,mAP提高了3.2%,对于钢材表面缺陷检测具有实际应用价值。  相似文献   

12.
实时目标检测算法YOLOv3的检测速度较快且精度良好,但存在边界框定位不够精确、难以区分重叠物体等不足。提出了Attention-YOLO算法,该算法借鉴了基于项的注意力机制,将通道注意力及空间注意力机制加入特征提取网络之中,使用经过筛选加权的特征向量来替换原有的特征向量进行残差融合,同时添加二阶项来减少融合过程中的信息损失并加速模型收敛。通过在COCO和PASCAL VOC数据集上的实验表明,该算法有效降低了边界框的定位误差并提升了检测精度。相比YOLOv3算法在COCO测试集上的mAP@IoU[0.5:0.95]提升了最高2.5 mAP,在PASCAL VOC 2007测试集上达到了最高81.9 mAP。  相似文献   

13.
螺帽缺失、螺栓缺失是角钢塔建设阶段常见的结构缺陷,但由于特征区分度低现有目标检测算法对螺栓缺陷检出率较低.针对这个问题,首先基于Transformer对卷积特征进行特征编码提出了全局信息提取算子,其次通过通道注意力机制自适应组合候选检测框多尺度缩放后引入的局部背景信息,最后基于图像分割与背景融合对螺栓缺陷样本进行数据扩增.消融实验表明上述策略均能有效提升螺栓缺陷检测效果且相互不排斥,与其他典型算法对比验证了本文算法的先进性.  相似文献   

14.
为提高行人检测的检测性能, 本文结合SqueezeNet、注意力机制、空洞卷积和Inception等结构, 提出一种基于改进YOLOv4的行人检测算法. 改进YOLO在特征增强部分引入残差连接和结合空洞卷积的注意力模块D-CBAM, 可以从提取到的特征中选择对目标检测重要的信息. 此外, 结合SqueezeNet的“squeeze- expand”结构和Inception网络的多尺度卷积思想提出Inception-fire模块用于替代网络中的连续卷积层, 通过增加网络的宽度达到提升算法性能的效果, 同时减少网络的参数. 最后, 根据行人检测任务的特点并结合Focal loss对损失函数进行改进, 分别对正负样本和难易样本添加权重因子, 强调对正样本和难分类样本的训练, 从而提高网络的检测能力. 改进的YOLO算法在INRIA行人数据集上的检测精度能够达到94.95%, 相对原YOLOv4提高4.25%, 同时参数量减少了36.35%, 检测速度也获得13.54%的提升, 在行人检测中能够表现出更优秀的性能.  相似文献   

15.
为了提高工业自动化水平,对表面缺陷进行有效检测,提出了一种改进的YOLOv3(You Only Look Once)网络检测方法。使用轻量级网络(MobileNet)来代替YOLOv3原有网络中的密集连接网络(Darknet-53),适当减少参数量的提取;加入空洞卷积,提高网络对小目标缺陷的检测能力;在网络结构的最后一层卷积中加入了Inception结构,进一步减少参数总量并加深网络。改进后的网络在测试集上精准性比原有的YOLOv3网络提高了23.3%,实时性也提高了95.4%,在钢板表面缺陷检测中具有更好的应用前景。  相似文献   

16.
In recent years, face detection has attracted much attention and achieved great progress due to its extensively practical applications in the field of face based computer vision. However, the tradeoff between accuracy and efficiency of the face detectors still needs to be further studied. In this paper, using Darknet-53 as backbone, we propose an improved YOLOv3-attention model by introducing attention mechanism and data augmentation to obtain the robust face detector with high accuracy and efficiency. The attention mechanism is introduced to enhance much higher discrimination of the deep features, and the trick of data augmentation is used in the training procedure to achieve higher detection accuracy without significantly affecting the inference speed. The model has been trained and evaluated on the popular and challenging face detection benchmark, i.e., the WIDER FACE training and validation subsets, respectively, achieving AP of 0.942, 0.919 and 0.821 with the speed of 28FPS. This performance exceeds some existing SOTA algorithms, demonstrating acceptable accuracy and near real time detection for VGA resolution images, even in the complex scenarios. In addition, the proposed model shows good generation ability on another public dataset FDDB. The results indicate the proposed model is a promising face detector with high efficiency and accuracy in the wild.  相似文献   

17.
针对复杂环境中,烟雾火焰检测存在精度低,小目标检测困难等问题,提出一种改进的基于YOLOv5s的小目标烟雾火焰检测算法。基于公开数据集自建了9 981张不相似的烟雾火焰图像数据集,解决现有数据集的限制,提高了模型的训练效率与泛化能力;在网络中添加3-D注意力机制SimAM,增加算法的特征提取能力,而且没有增加额外的参数;修改网络中的Neck结构,将三尺度检测改为四尺度检测,并结合了加权双向特征金字塔网络(BiFPN)结构,对特征融合过程进行修改,提高小目标的检测能力与特征融合能力;通过遗传算法来优化网络中的部分超参数,进一步模型的检测能力。实验结果表明,改进后的算法比原始YOLOv5s算法平均检测精度提高了7.2%,同时对小目标检测精度更高,误检漏检等情况减少。  相似文献   

18.
森林火灾、野火是一个重大的自然灾害问题,每年全球各地植被都会受到严重的破坏。为了提高森林火灾的防控精度,针对传统方法具有火灾背景复杂、准确率低、效率低等问题,本文提出一种基于CenterNet的森林火灾检测算法。CenterNet作为一种无锚的方法,将目标定义为一个点,通过关键点估计定位目标的中心点,可以有效避免小目标的漏检。同时基于高效深层特征提取网络ResNet50,融合ECA模块以抑制无用信息,增加模型的特征提取能力。在公开森林火灾数据集上进行实验表明,与其他算法相比,本文提出的森林火灾检测算法误检率低,识别精度达到92.39%,F1值为0.86,Recall值为79.75%,FPS为43.31。本文提出的方法检测精度高,可满足实时检测森林火灾和实施精准施救的要求。  相似文献   

19.
针对白细胞数据样本少、类间差别小及目标尺寸小导致的检测精度低、效果不佳等问题,提出一种基于改进YOLOv5的白细胞检测算法YOLOv5-CHE.在主干特征提取网络的卷积层中添加坐标注意力机制,以提升算法的特征提取能力;使用四尺度特征检测,重新获取锚点框,增加浅层检测尺度,来提高小目标的识别精度;改变边框回归损失函数,以...  相似文献   

20.
针对工业场景下带钢表面缺陷样本少、缺陷尺寸大小不一等问题, 提出一种适用于小样本条件下的带钢表面缺陷检测网络. 首先, 算法以YOLOv5s框架为基础, 设计一种融合注意力机制的多尺度路径聚合网络作为模型的颈部, 增强模型对缺陷目标的多尺度预测能力; 其次, 提出一种自适应解耦检测结构, 缓解小样本情况下分类和定位任务之间的矛盾; 最后, 提出一种融合Wasserstein距离的边界框回归损失函数, 提升模型对小目标缺陷的检测精度. 实验表明, 在构建的小样本带钢表面缺陷数据集上, 本文模型的检测性能优于其他小样本检测模型, 更适用于工业环境下的小样本缺陷检测任务.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号