首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
为了解决由于型钢表面缺陷形态多样、微小缺陷众多所带来的检测效率低与检测精度差的问题,提出一种基于可变形卷积与多尺度-密集特征金字塔的型钢表面缺陷检测算法——Steel-YOLOv3。首先,使用可变形卷积代替Darknet53网络部分残差单元的卷积层,从而强化特征提取网络对型钢表面多类型缺陷的特征学习能力;其次,设计了多尺度-密集特征金字塔模块:在原有YOLOv3算法的3层预测尺度上增加1层更浅层的预测尺度,再对多尺度特征图进行跨层密集连接,从而增强对密集微小缺陷的表征能力;最后,针对型钢缺陷尺寸分布特点,使用K-means维度聚类方法优化先验框尺寸并将先验框平均分配到4个对应预测尺度上。实验结果表明:Steel-YOLOv3算法具有89.24%的检测平均精度均值(mAP),与Faster R-CNN(Faster Region-based Convolutional Neural Network)、SSD(Single Shot MultiBox Detector)、YOLOv3和YOLOv5算法相比分别提高了3.51%、26.46%、12.63%和5.71%,且所提算法显著提升了微小剥落缺陷的检出率。另外,所提算法的每秒检测图像数量达到25.62张,满足实时检测的要求,可实际应用于型钢表面缺陷的在线检测。  相似文献   

2.
针对轧刚表面缺陷种类多样、形状多变导致检测效率低、精度差的问题,提出了一种改进YOLOv3的轧钢表面缺陷检测算法。首先,对骨干网络提取的特征采用PSA金字塔拆分注意力模块进行多尺度融合。其次,采用PAN结构代替FPN,使得浅层语义和深层语义的特征能充分融合。接着采用Decoupled_Head,将回归预测和逻辑预测分离以避免之间的干扰。最后,在损失函数方面,根据真实框大小赋予不同权值,以提高网络对小目标的检测效果。实验表明改进后的YOLOv3在NEU-DEU数据集上的平均检测精度为80.01%,比原始的YOLOv3提高了3.05%,且相较于YOLOx、YOLOv5等算法也有较大的检测精度优势。  相似文献   

3.
近年来,随着我国制造业的快速发展,铝材的需求量日益增长。然而,铝材在生产过程中会出现不同类型的缺陷,这些缺陷影响铝材的质量、美观度和使用寿命。为实现快速、准确地识别铝片表面缺陷,基于YOLOv5网络提出了一种改进的铝片表面缺陷检测方法。为了提高检测模型的特征提取和特征融合能力,引入注意力机制CBAM模块,协助模型关注和提取更有用的特征信息。在回归损失方面,采用Alpha-IoU函数来替代原来的CIOU损失函数,降低预测框的回归损失,提升定位精度。通过实验验证,该方法能够有效识别铝片表面的缺陷类型和位置,具有较高的实用价值。  相似文献   

4.
5.
为了提高工业产品表面缺陷的检测精度,提出了一种基于改进YOLOv5的表面缺陷检测方法。首先,结合Mix Up、Mosaic和传统方法进行数据增强,修改YOLOv5残差单元,降低模型的浮点计算量;其次,将压缩激励(squeeze-and-excitation, SE)注意力机制插入特征提取层末端和颈部首端,去除特征图中无用的背景干扰,提高对特征的提取效率;最后,在颈部末端,插入上下文变化(contextual transformer, CoT)模块,提高平均检测精度。使用改进的形状交并比非极大值抑制(shape-intersectionoverunionnon-maximum suppression,SIoU-NMS),剔除重复目标框。实验结果表明,在新材料地板缺陷数据集和瓶装白酒缺陷数据集上,所提算法的平均检测精度为81.2%和79.7%,较YOLOv5基线网络模型,分别提高了3.8%和4.6%,且优于其他典型的目标检测算法。这展现了该算法对工业产品表面缺陷进行识别和分类的精确性,可以更好地完成工业产品的质检过程。  相似文献   

6.
针对YOLOv3目标检测算法在风机叶片表面缺陷检测任务中存在易产生冗余框和漏检等问题,提出了一种基于全局上下文(Global Context,GC)注意力机制的风机叶片表面缺陷检测方法,简称GC-YOLOv3。该方法通过对YOLOv3的特征提取网络Darknet53中的残差块嵌入全局上下文注意力模块,使得模型能够重点关注缺陷所在位置区域,达到有效减少冗余框和降低漏检风险的目的。实验结果表明,GC-YOLOv3相比于YOLOv3准确率提升了3.38%。同时,与基于Squeezeand-Excitation和Non-local的注意力机制相比,使用全局上下文注意力机制的模型检测精度更高。  相似文献   

7.
缺陷检测是生产中重要的环节,基于钢板表面缺陷特征不明显和难以提取导致的检测精度不足问题,文章在YOLOv5s检测网络的基础上进行改进,首先基于DO-Conv过参数化模块改进网络特征提取模块,然后使用ULSAM注意力机制改进网络的颈部(Neck),提出改进的YOLOv5s缺陷检测网络。基于NEU-DET数据集的实验结果表明,改进的YOLOv5s缺陷检测网络检测平均准确率达76.6%,较YOLOv5s和YOLOv4分别提升了7.8%和6.3%,有效提高了钢材表面缺陷检测精度。  相似文献   

8.
深度学习在缺陷检测方面具有优越性能,然而在工业应用过程中由于缺陷概率低,无缺陷图像的检测过程占据了大部分计算时间,严重限制了整体上的有效检测速度。针对上述问题,提出一种基于级联网络的型钢表面缺陷检测算法SDNet。该算法分为两个阶段:预检阶段和精检阶段。预检阶段采用基于深度可分离卷积(DSC)以及多尺度并行卷积的轻量化ResNet预检网络,判断型钢表面图像是否存在缺陷;精检阶段以YOLOv3作为基准网络对图像中的缺陷进行准确分类与定位,并在主干特征提取网络以及预测分支中引入改进空洞空间金字塔池化(ASPP)模块以及对偶注意力模块,以提升网络的检测性能。实验结果表明,SDNet在1 024像素×1 024像素图像上的检测速度达到每秒120.63帧,准确率达到92.1%。与原YOLOv3算法相比,所提算法的检测速度是原YOLOv3算法的3.7倍,检测精度提高了10.4个百分点,可应用于型钢表面缺陷的快速检测。  相似文献   

9.
两段式缺陷检测模型中分割和分类网络的优化目标不一致,导致二者耦合性较差,且分割模块误差的积累可能进一步弱化分类模块的性能.针对上述问题,提出一种基于注意力机制的缺陷检测联合优化算法.首先基于混合注意力特征融合模块的分割网络融合浅层特征和深层特征,提取更全面的缺陷位置信息;然后基于多感受野空间注意力模块的分类网络挖掘更具判别性的缺陷类别特征;最后通过联合优化目标实现分割和分类网络的学习优化,提升整个算法的耦合性以及性能.基于PyTorch框架,在公开工业缺陷检测数据集DAGM 2007,MAGNETIC-TILE和KolektorSDD2数据集上进行实验,并引入分段式算法及类U-Net算法进行横向对比的结果表明,所提算法的准确率相比分段式算法最高提升28.02%,相比类U-Net算法最高提升8.3%,且精确率、召回率、F1值均优于同类算法,具有更好的检测性能.  相似文献   

10.
在电机磁瓦生产中可能因生产工艺不可避免产生残次品从而影响电机质量,因此对电机磁瓦质量进行挑选,去除残次品,成为电机磁瓦生产中的必须工序。为解决传统图像处理检测能力弱、效率低且检测精准度低等问题,在ResNet-50的网络结构基础上,提出一种融合多重注意力机制残差网络的电机磁瓦缺陷检测网络模型。该目标检测网络结合卷积网络和注意力机制(Convolutional Block Attention Module, CBAM)构建了一种可以和网络进行端到端训练的非降维通道注意力和空间注意力串联模块,以建立特征之间的空间相关性,增强网络性能。在电机磁瓦数据集上的实验结果表明,改进的目标检测网络在电机磁瓦缺陷图像的全类别平均准确率mAP达到96.92%,所提算法的mAP值较原始ResNet-50网络算法提升了2.17%。验证了所提算法对电机磁瓦缺陷检测任务的有效性。  相似文献   

11.
针对当前YOLOv5算法检测钢材表面缺陷精度不高、速度慢等问题,提出一种基于多尺度轻量化注意力的YOLO-Steel钢材表面缺陷检测方法.首先,提出一种轻型通道注意力模块,仅需少量计算成本即可有效关注重要通道;然后,利用空洞卷积扩大感受提出一种轻型空间注意力模块,能够在空间维度上提取有价值信息;接着,提出金字塔注意力结构,利用多级池化放缩特征图在不同分辨率特征图上使用空间注意力模块学习其空间依赖信息,对多级特征图使用通道注意力模块重构其通道相关信息,改善检测效果.实验结果表明, YOLO-Steel在钢材表面缺陷数据集上平均精度均值(mAP)可达77.2%,比YOLOv5s算法提高1.8%,模型时间、空间复杂度与YOLOv5s基本持平,在保证检测速度的基础上能够有效提高精确度.  相似文献   

12.
    
In recent years, face detection has attracted much attention and achieved great progress due to its extensively practical applications in the field of face based computer vision. However, the tradeoff between accuracy and efficiency of the face detectors still needs to be further studied. In this paper, using Darknet-53 as backbone, we propose an improved YOLOv3-attention model by introducing attention mechanism and data augmentation to obtain the robust face detector with high accuracy and efficiency. The attention mechanism is introduced to enhance much higher discrimination of the deep features, and the trick of data augmentation is used in the training procedure to achieve higher detection accuracy without significantly affecting the inference speed. The model has been trained and evaluated on the popular and challenging face detection benchmark, i.e., the WIDER FACE training and validation subsets, respectively, achieving AP of 0.942, 0.919 and 0.821 with the speed of 28FPS. This performance exceeds some existing SOTA algorithms, demonstrating acceptable accuracy and near real time detection for VGA resolution images, even in the complex scenarios. In addition, the proposed model shows good generation ability on another public dataset FDDB. The results indicate the proposed model is a promising face detector with high efficiency and accuracy in the wild.  相似文献   

13.
针对当前钢材表面缺陷检测模型存在的结构复杂、参数量大、实时性差和检测精度不高等问题,提出了一种基于改进YOLOv5s的轻量化模型。该模型首先将YOLOv5的主干网络替换为MobileNetV3,以实现模型轻量化并提升检测速度。其次,引入在线卷积重参数化(Online Convolutional Re-parameterization,OREPA)技术,进一步降低了训练成本,并使用K-means++算法聚类先验框来提高先验框聚类的准确性和收敛速度。最后,采用EIoU(Extended Intersection over Union)代替CIoU(Complete Intersection over Union)损失函数,加快了收敛并改善了回归精度。实验数据表明,相较于原始YOLOv5s模型,改进后模型的平均精度均值提高2.8个百分点,参数量减少84.0%,体积减小81.4%,检测速度提升60.8%,实现了模型轻量化和检测精度的平衡,易于部署,可满足钢材实际生产中实时检测的需求。  相似文献   

14.
钢材表面缺陷对于钢材行业来说是一个巨大的挑战.针对传统的钢材缺陷检测方法存在着效率低、检测精度不高等问题,基于YOLOv7 设计了一种AFSD-YOLOv7 模型进行实时的钢材表面缺陷检测.首先,在 YOLOv7 模型中使用一种轻量化卷积结构替换标准卷积结构,,以加速模型的推理过程;然后采用快速空间金字塔池化结构替换原始空间金字塔池化结构,以加速网络的特征提取过程;最后添加改进的ECA-Net注意力机制,以提升模型检测精度.实验结果表明,AFSD-YOLOv7 能够对钢材缺陷进行有效识别,相比 YOLOv7 模型,计算量减少了 54.8%,mAP提高了 3.2%,对于钢材表面缺陷检测具有实际应用价值.  相似文献   

15.
YOLO目标检测算法是当前基于图像的输电线路绝缘子缺陷检测的主流方法,然而现有模型复杂度较大,亟需合理有效的参数压缩方法作为前提条件,来为解决无人机边缘设备部署的困境问题奠定基础;同时,无人机航拍的绝缘子缺陷图像背景复杂、缺陷尺寸较小,容易出现误检、漏检等问题。为此,提出了一种用于输电线路绝缘子多缺陷检测的Insulator Defect Detection-YOLOv7(IDD-YOLOv7)模型,以降低模型复杂度,提高模型鲁棒性。首先,在多尺度特征融合的过程中加入坐标注意力(Coordinate Attention)机制,抑制复杂背景的干扰,提升模型对小目标的全局感知能力;之后,设计C3GhostNetV2模块,用于捕获不同空间像素之间的远程依赖性,在增强模型表达能力的同时降低模型的参数量和浮点运算量;最后,提出Focal-CIoU损失函数,提高模型高质量anchor的贡献,加快模型的收敛速度。实验结果表明,本文方法与基线模型相比mAP50提升了3.8%,查准率和召回率分别提升了1.7%和7.6%,参数量和浮点运算量分别下降了18.3%和14.0%,绝缘子自爆、破损、闪络缺陷的AP50分别提升了0.8%、4.5%、6.3%。  相似文献   

16.
针对可见光模态与热红外模态间的差异问题和如何充分利用多模态信息进行行人检测,本文提出了一种基于YOLO的多模态特征差分注意融合行人检测方法.该方法首先利用YOLOv3深度神经网络的特征提取主干分别提取多模态特征;其次在对应多模态特征层之间嵌入模态特征差分注意模块充分挖掘模态间的差异信息,并经过注意机制强化差异特征表示进而改善特征融合质量,再将差异信息分别反馈到多模态特征提取主干中,提升网络对多模态互补信息的学习融合能力;然后对多模态特征进行分层融合得到融合后的多尺度特征;最后在多尺度特征层上进行目标检测,预测行人目标的概率和位置.在KAIST和LLVIP公开多模态行人检测据集上的实验结果表明,提出的多模态行人检测方法能有效解决模态间的差异问题,实现多模态信息的充分利用,具有较高的检测精度和速度,具有实际应用价值.  相似文献   

17.
针对光伏电池对于太阳能转化效率不稳定的问题,提高光伏电池的质量,提出基于改进YOLOv7-tiny的光伏电池缺陷检测算法PSD-YOLO,在YOLOv7-tiny中引入轻量化卷积模块PSDConv.将GSConv中的DW卷积替换为Partial卷积,降低了内存访问量并提高了检测速度;并且引入了GhostNetv2中的解耦全连接注意力(DFC)机制,在保持其可部署性的同时提高了轻量级算法对光伏电池复杂缺陷类型的检测能力;在损失函数部分,将原本的CIoU替换为EIoU,加速了收敛且提高了回归精度.实验结果表明,PSD-YOLO模型在参数量和计算量方面分别相较于YOLOv7-tiny模型下降了18.3%和16.7%,模型大小仅有4.9×106,mAP@0.5提升了5.3个百分点,在实现更小模型体积的同时,达到了更高的检测性能.  相似文献   

18.
柴油车辆排放黑烟是道路交通环保执法的重点和难点。由于受复杂环境条件的影响,针对目前黑烟检测存在精度和速度方面的不足,提出一种基于改进YOLOv8的轻量级柴油车辆排放黑烟的检测模型。首先,在YOLOv8主干网络的基础上,设计一种轻量化特征提取模块C2f-Faster Rep提高模型的特征提取能力,同时C2f-FasterRep模块引入上下文锚框注意力机制模块来捕捉长距离的上下文信息,利用全局平均池化和条形卷积增强特征图中心区域的特征,从而提高检测精度;其次,在颈部部分提出一个新的网络结构用于融合主干网络提取的特征,并使用通道注意力模块和维度匹配机制对不同尺度的特征进行融合,增强了模型的多尺度特征融合能力;最后,使用Transformer解码器结构优化YOLOv8模型的检测头,同时,采用交并比感知的查询机制,有助于解码器查询的优化,提高了模型的分类和定位的性能。为保证实验的真实性和有效性,利用部署在河南许昌某道路断面的检测设备采集数据并进行测试验证。实验结果表明,该方法的m Ap为95.4%,精确率为94.5%,召回率为97.5%,与现有的黑烟检测方法相比,具有更高的检测精度和更快的检测速度。消融实验结果表明该轻量化特征提取模块、特征融合模块和检测头有利于提高模型检测精度。  相似文献   

19.
在瓷砖表面缺陷检测方面,在保证一定检测速度的前提下,对于小目标缺陷的检测较为困难,总体检测精度依然较低.提出了一种改进YOLOv8的瓷砖表面缺陷检测方法.第一,对原始的大幅面瓷砖数据集进行数据预处理,通过切片操作得到适合YOLOv8输入尺寸的瓷砖数据,防止瓷砖缺陷在缩放的过程中丢失;第二,考虑到瓷砖表面存在小目标缺陷的占比较大问题,使用SPD-Conv的结构代替传统的下采样方式,能够完整地保留通道维度中的所有信息,从而提高对小目标缺陷的检测能力;第三,对YOLOv8中原有的C2f模块进行改造,加入了 Efficient Channel Attention注意力机制,设计了 C2f ECA模块,并在backbone网络中进行替换,使得网络在特征提取的过程中能够更为关注缺陷信息,减少背景信息的干扰;第四,添加了微小目标检测头在第二次下采样后进行检测,提高YOLOv8对微小目标的检测能力.该方法在天池瓷砖瑕疵检测数据集上进行实验验证,改进后的模型分别在mAP50-95、mAP50 和 mAP75 上达到 57.7%、86.6%、60.6%,比基础网络 YOLOv8s 分别提升了9.4、5、14.3个百分点.同时,高于YOLOv8m的精度和远低于YOLOv8m的复杂度,属于轻量级模型,符合工业化的需求.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号