首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
医学图像处理技术综述   总被引:1,自引:0,他引:1  
周贤善 《福建电脑》2009,25(1):34-34
医学影像已成为医学技术中发展最快的领域之一,临床医生在医学图象处理技术的帮助下,对人体内部病变部住的观察更直接、更清晰.确诊率也更高。本文对图像分割、图像配准和图像融合等医学图像处理技术的现状和发展进行了综述。  相似文献   

2.
视网膜血管的自动分割在眼科和心血管疾病的计算机辅助诊断中发挥着重要作用.注意力机制能够提高经典神经网络模型对图像特征提取的效率和精度,因此注意力机制在视网膜血管分割模型中广泛使用.首先回顾了视网膜血管分割的常用数据集及评价指标,接着根据工作机理将注意力分为选择性注意力机制和自注意力机制两类;根据计算机视觉任务中的作用域将注意力方法分为通道注意力、空间注意力以及混合注意力三类,结合视网膜血管分割任务重点介绍了以上三类方法的代表性注意力模型的具体应用,并对相关模型进行性能对比和评价.最后,对注意力机制存在的问题以及未来的发展趋势进行了讨论.  相似文献   

3.
注意力机制因其优秀的效果与即插即用的便利性,在深度学习任务中得到了越来越广泛的应用。主要着眼于卷积神经网络,对卷积网络注意力机制发展过程中的各种主流方法进行介绍,并对其核心思想与实现过程进行提取与总结,同时对每种注意力机制方法进行实现,针对同型号辐射源设备实测数据进行对比实验与结果分析,并依据主流方法的思想与实验的结果总结并阐述了卷积网络中的注意力机制的研究现状与未来其发展方向。  相似文献   

4.
近年来,针对电子病历文本的研究受到越来越多的关注,而相关疾病预测模型很少注意到病历文本中记录独立分布的半结构化形式以及语义关系复杂的特点,故该文提出了一种基于加权层级注意力机制的辅助诊断方法,设计加权累加法将普通句向量转换为结构弱关联句向量,并构成词、句、文档层级结构注意力机制来提高模型结构学习能力,此外,设计监督层用于缓解语义关系复杂造成的学习偏置问题,以辅助模型的训练效果。在真实数据集中进行验证表明,该文模型优于当前主流的深度学习模型,取得了较好效果。  相似文献   

5.
介绍了多媒体技术在医学图像处理中的应用及其所需的计算机硬件和软件的设计思想。  相似文献   

6.
注意力机制已成为改进神经网络学习能力的研究热点之一。鉴于注意力机制受到的广泛关注,本文旨在从注意力机制的分类、与深度神经网络的结合方式,以及在自然语言处理和计算机视觉领域的具体应用3个方面对深度神经网络中的注意力机制给出较全面的分析和阐述。具体地,分析比较了软注意力、硬注意力和自注意力这3种机制的优缺点;并分别讨论了递归神经网络和卷积神经网络中结合注意力机制的常用方式及其代表性模型结构;然后,以自然语言处理、计算机视觉领域为例,说明了其应用情况;最后,分析了注意力机制的发展趋势,期望为后续研究提供线索和方向。  相似文献   

7.
探讨注意力机制如何帮助推荐模型动态关注有助于执行当前推荐任务输入的特定部分.分析注意力机制网络框架及其输入数据的权重计算方法,分别从标准注意力机制、协同注意力机制、自注意力机制、层级注意力机制和多头注意力机制这五个角度出发,归纳分析其如何采用关键策略、算法或技术来计算当前输入数据的权重,并通过计算出的权重以使推荐模型可...  相似文献   

8.
基于注意力机制的两阶段纵膈淋巴结自动分割算法   总被引:1,自引:0,他引:1  
判断淋巴结分区是否存在淋巴结转移以及准确分割恶性淋巴结对于肺癌诊断以及治疗意义重大.针对纵膈淋巴结尺寸差异大、正负样本不平衡、与周边软组织和肺肿瘤特征相似等问题,提出了一个新颖的用于纵膈淋巴结分割的基于注意力机制的级联算法.首先,根据医学先验设计了两阶段分割算法剔除纵膈干扰组织后对疑似淋巴结进行分割,减少负样本的影响和...  相似文献   

9.
随着近年来高新技术的迅速发展,对医学图像处理的需求日益增加,突显出医学图像处理在医务系统中的重要性。为了改善医学类院校的实验教学,提高实验教学质量,将基于对象方法设计的可视化工具VTK应用到医学图像处理的实验教学中,使学生能够直观地学习医学图像处理的基本原理及方法,全程地接受关于医学图像处理方面软件的软件过程培训。  相似文献   

10.
注意力机制综述   总被引:1,自引:0,他引:1  
现在注意力机制已广泛地应用在深度学习的诸多领域.基于注意力机制的结构模型不仅能够记录信息间的位置关系,还能依据信息的权重去度量不同信息特征的重要性.通过对信息特征进行相关与不相关的抉择建立动态权重参数,以加强关键信息弱化无用信息,从而提高深度学习算法效率同时也改进了传统深度学习的一些缺陷.从图像处理、自然语言处理、数据...  相似文献   

11.
肺结节计算机辅助诊断(Computer-aided diagnosis,CAD)能够从CT图像中检测、分割和诊断肺结节,提高早期肺癌的生存率,因而具有重要临床意义。由于肺结节的形态根据其类型、尺寸、位置、内部结构及恶性与否等动态变化,导致肺结节检测和诊断已经成为一个重大的挑战问题。本文对比分析了CAD系统中肺实质分割、肺结节检测、肺结节分割以及肺结节良恶性判断等4个步骤所运用的关键技术及挑战,并指出开发有效CAD系统需要进一步优化不同类型结节诊断算法灵敏度、降低结节检测误报数量、提高诊断自动化水平,同时需要集成影像存储与通信系统(Picture archiving and communication systems, PACS)以及电子病历系统(Electronic medical record systems, EMRS),以便在日常临床实践中应用。  相似文献   

12.
对于CT影像中检测出的肺部结节, 需要自动判断其是否有癌变风险. 不同于大多数现有的研究方法只区分结节良恶性, 本文提出了一个基于注意力机制的多任务学习模型, 将与结节良恶性相关的语义特征属性一并判断输出, 通过判断9个结节特征(对比度、分叶征、毛刺征、球形度、边缘、纹理、钙化程度、大小以及恶性程度)的同时实现内在特征的共享, 以达到提高各子任务性能的目的. 选择视觉转换器(ViT)模型作为多任务共享特征提取层, 整体模型采用动态加权平均方法来对各子任务的Loss函数进行优化. 在LUNA16数据集上的实验表明, 该学习框架可以提升肺结节癌变风险判断的性能, 且同时对其他语义特征的判断也能提升结果的可解释性.  相似文献   

13.
从计算机断层扫描(CT)中准确分割各种临床病变是肿瘤学成像的关键任务.然而,现有分割框架均是针对某种特定类型疾病设计的,且对于精确分割视觉上不显著的小范围肿瘤仍然极具挑战性.为此,通过模仿临床医生的诊断行为,提出基于多尺度视觉信息和非局部目标挖掘的非显著小肿瘤分割框架.该框架首先结合尺度空间理论提取1.0×、0.5×、1.5×尺度下的差异化特征.然后,使用尺度融合模块分层融合特定尺度的特征映射,得到既全面又准确的肿瘤表征.得到的特征通过全局定位模块捕获通道和空间位置的远程语义依赖关系,从全局角度定位肿瘤,得到初始预测结果.分层聚焦模块基于前景和背景特征进行上下文探索,逐层聚焦错误区域,并利用逐元素加法、减法消除这些错误.通过逐层细化粗糙的预测结果,最终实现更为精细的非显著小肿瘤分割.在小肠间质瘤数据集(SISD)和胰腺肿瘤数据集(PTD)的实验表明,该框架在6个标准度量下均优于现有的10个先进方法.所提框架在SISD和PID数据集上分别达到58.37%和57.64%(Dice),比之前最优秀的结果分别提高7.38百分点和4.07百分点.  相似文献   

14.
针对乳腺数字图像中有些钙化点与周围背景对比度较小,计算机自动提取钙化点具有一定难度的问题,提出了采用同态滤波与形态学Top-hat变换相结合提取钙化点的算法。选用适当的滤波函数及参数通过同态滤波使得钙化点与周围背景的对比度得到加强;再采用适当的结构元素对增强后的乳腺图像进行Top-hat变换以定位乳腺钙化点:然后对图像进行二值化提取出钙化点。实验表明.采用本方法提取乳腺钙化点对于某类乳腺片效果良好.能较好地满足计算机辅助乳腺诊断的要求。  相似文献   

15.
目的 肠胃镜诊断一直被认为是检测及预防结直肠癌的金标准,但当前的临床检查中仍存在一定的漏诊概率,基于深度学习的肠胃内窥镜分割方法可以帮助医生准确评估癌前病变,对诊断和干预治疗都有积极作用。然而提高目标分割的准确性仍然是一项具有挑战性的工作,针对这一问题,本文提出一种基于双层编—解码结构的算法。方法 本文算法由上、下游网络构成,创新性地利用上游网络训练产生注意力权重图,对下游网络解码过程中的特征图产生注意力引导,使分割模型更加注重目标区域;提出子空间通道注意力结构,在跨越连接中提取多分辨率下的跨通道信息,可以有效细化分割边缘;最终输出添加残差结构防止网络退化。结果 在公共数据集CVC-ClinicDB(Colonoscopy Videos Challenge-ClinicDataBase)和Kvasir-Capsule上进行测试,采用Dice相似系数(Dice similariy coefficient, DSC)、均交并比(mean intersection over union, mIoU)、精确率(precision)以及召回率(recall)为评价指标,在两个数据集上的DSC分别...  相似文献   

16.
精确识别组织器官和病变区域是医学影像分析中最重要的任务之一. 在现有的医学影像语义分割研究中, 基于U-Net结构的模型占据了主导地位. TransUNet结合了CNN和Transformer的优势, 弥补了两者在捕捉长程依赖和提取局部特征方面的不足, 但在提取和复原特征的位置时仍不够准确. 针对此问题, 提出了一种多注意力融合机制的医学影像分割模型MAF-TransUNet. 该模型首先在Transformer层之前增加一个多注意力融合模块(MAF)来增强位置信息的表达; 然后在跳跃连接中再次结合多注意模块(MAF)使位置信息能够有效地传递到解码器一侧; 最后在解码阶段使用深度卷积注意力模块(DCA)保留更多的空间信息. 实验结果显示, MAF-TransUNet相较TransUNet在Synapse多器官分割数据集和ACDC自动心脏诊断数据集上的Dice系数分别提升了3.54%和0.88%.  相似文献   

17.
在基于视频图像的群组行为识别方法中,传统的深度学习方法大多使用标准(最大/平均)池化操作对卷积特征进行处理,并且未考虑群组行为中的关键人物对群组行为分类的重要性。针对以上问题,本文提出一种基于注意力机制的模型来检测群组行为视频中的行为,重点关注活动中的关键人物,根据注意力权重的不同分配动态地对卷积特征进行池化,最终正确识别视频图像中的群组行为。此模型在群组行为数据集CAD(Collective activity dataset)和CAE(Collective activity extended dataset)上的识别准确率优于许多使用标准池化结构的现有模型。  相似文献   

18.
骶髂关节病变是预警强直性脊柱炎的主要体征之一, 精确高效的骶髂关节自动分割对于协助医生临床诊断和治疗至关重要. 针对骶髂关节灰度多变、背景复杂、且因骶髂间隙狭小而存在容积效应导致的特征提取受限, 分割精度难以提升的问题, 本研究利用层次级联补偿下采样信息丢失以及注意力并行保留跨维信息特征的思想, 提出首个用于骶髂关节分割诊断的U型网络. 此外, 为了提高临床诊断的效率, 将U型网络中传统的卷积替换为高效部分卷积块. 本实验在山西白求恩医院提供的骶髂关节CT数据集中, 验证了分割精度及效率平衡方面的有效性, 最终DICE达到91.52%, IoU达到84.41%. 实验结果表明, 改进的U型分割网络能有效提高骶髂关节分割精度, 减轻医疗专业人员的负担.  相似文献   

19.
为实现队列姿态动作的准确评估,针对训练场景中踢腿高度等三维人体姿态特征难以准确测量的问题,提出融合双目信息的队列三维姿态特征检测方法。方法分为2D姿态估计和双目立体匹配两个阶段。为提高2D人体姿态检测精度,设计基于改进HRNet网络的2D姿态估计模型。首先,在主干网络引入空间通道注意力,增强特征提取能力。特征融合层采用自适应空间特征融合模块,融合网络多尺度特征。其次,采用无偏数据处理方法进行热图编解码,减小数据统计误差。最后,在模型训练时采用由粗到细的多阶段监督方法,提高关键点的检测准确率。在2D姿态估计模型基础上,采用标准相关匹配函数实现双目立体匹配,再通过坐标变换得到三维人体姿态。实验结果表明,改进的姿态估计网络有较好的精度,在COCO数据集精度达到77.1%,在自制的队列训练数据集上精度达到86.3%,相比原网络分别提升2.2%和3.1%。在三维人体姿态的踢腿高度实验中,该方法测得平均相对误差为2.5%,充分验证了算法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号