共查询到18条相似文献,搜索用时 78 毫秒
1.
针对YOLOv3目标检测算法在风机叶片表面缺陷检测任务中存在易产生冗余框和漏检等问题,提出了一种基于全局上下文(Global Context,GC)注意力机制的风机叶片表面缺陷检测方法,简称GC-YOLOv3。该方法通过对YOLOv3的特征提取网络Darknet53中的残差块嵌入全局上下文注意力模块,使得模型能够重点关注缺陷所在位置区域,达到有效减少冗余框和降低漏检风险的目的。实验结果表明,GC-YOLOv3相比于YOLOv3准确率提升了3.38%。同时,与基于Squeezeand-Excitation和Non-local的注意力机制相比,使用全局上下文注意力机制的模型检测精度更高。 相似文献
2.
实时目标检测算法YOLOv3的检测速度较快且精度良好,但存在边界框定位不够精确、难以区分重叠物体等不足。提出了Attention-YOLO算法,该算法借鉴了基于项的注意力机制,将通道注意力及空间注意力机制加入特征提取网络之中,使用经过筛选加权的特征向量来替换原有的特征向量进行残差融合,同时添加二阶项来减少融合过程中的信息损失并加速模型收敛。通过在COCO和PASCAL VOC数据集上的实验表明,该算法有效降低了边界框的定位误差并提升了检测精度。相比YOLOv3算法在COCO测试集上的mAP@IoU[0.5:0.95]提升了最高2.5 mAP,在PASCAL VOC 2007测试集上达到了最高81.9 mAP。 相似文献
3.
近年来, 人工智能在各个领域有着广泛的应用. 针对超市及菜市场人工称重操作耗时、计价流程繁杂的问题, 本文提出一种基于注意力YOLOv5模型的水果自动识别算法. 首先, 为了提升仅有局部特征不同, 全局特征相似水果的识别准确率, 本文在YOLOv5的SPP (spatial pyramid pooling)层后增加SENet (squeeze-and-excitation networks), 采用注意力机制自动学习每个特征通道的重要程度, 进而按照重要程度强化对水果识别任务有用的特征并抑制没有用的特征; 其次, 针对水果识别预测框与目标框重叠时, GIOU不能准确表达边框重合关系问题, 本文将原有的边框回归损失函数GIOU替换为CIOU, 同时考虑目标框与预测框的高宽比和中心点之间的关系, 从而使水果预测框更加接近真实框, 提升预测精度. 实验结果表明, 改进后的模型在常见场景下水果识别能力有明显提升, 平均精度mAP达99.10%, 识别速度FPS达到82, 能够满足实际应用需要. 相似文献
4.
实时而准确的交通标志检测是车辆的辅助驾驶和无人驾驶的关键需求。为解决目标检测算法对小目标物体检测精确率低、检测速度慢的问题,提出一种嵌入混合注意力机制的交通标志检测算法YOLOv3-HA。该算法融合改进的通道注意力机制和子空间注意力机制,使网络模型能够对特征进行通道和空间上的注意力加权,提升网络对有效特征的表达能力并减少干扰特征的影响。采用K-Means++聚类算法对锚框进行聚类和选择,加快网络模型的收敛速度。实验表明,该算法在TT100K(Tsinghua-Tencent 100 K)数据集上的平均准确率均值达到81.0%,相比于YOLOv3算法提升了14.2%;与一些主流目标检测算法相比,YOLOv3-HA算法在准确性和实时性上达到了良好的平衡。 相似文献
5.
传统典型的公交车人数统计方法在准确率和速度方面存在一些不足,且提取目标特征的效果较差.本文提出了基于深度卷积神经网络的公交车人数统计系统解决人群计数问题.首先制作数据集,难点在于所有用于训练的数据集均是手工标注.并且公交车摄像头角度比以往文献覆盖更广区域.本文首先比较了多种不同的深度卷积神经网络模型对乘客进行全身检测的效果.综合考虑检测速率、准确率等方面,最终采用单次检测器深度卷积神经网络模型对乘客进行人头目标检测,在线实时目标追踪算法实现人头的多目标追踪,跨区域人群计数方法统计公交车下车人数.系统准确率达到78.38%,运行速率约为每秒识别19.79帧.实现了人群计数. 相似文献
6.
7.
随着我国人口的增长,室内公共资源(如图书馆、商场、教室等)的有限性变得日益突出。因此,对于资源有限的公共场所进行实时的人数统计,有助于人们做出更加合理的资源分配,节约人们在排队和寻找空间上消耗的大量时间。针对上述需求,设计了基于ZigBee的无线室内人数统计系统。该系统采用多组红外传感器组成人数信息的感知模块,然后通过ZigBee无线组网来实时收集传感器数据,并根据这些数据分析室内人数的变化情况,从而计算得到室内实时人数。实验结果表明,该系统能够有效统计室内人数信息,并具有低成本、低功耗、实时性强等特点。 相似文献
8.
基于MATLAB的数字图像人数统计 总被引:1,自引:0,他引:1
从视频截取的图象中统计人数,一直是图象处理领域的一个前沿课题,在交通监控、客流量统计、运动分析、虚拟现实等领域都有很高的实用价值。本文提出了一种应用MATLAB软件,基于人体轮廓特征的提取及填充的来统计人数的方法,首先对图像使用中值滤波去噪,然后用canny算子检测出了图像的轮廓,为了得到完整封闭的轮廓线,使用了形态学的方法进行膨胀运算,最后,用MATLAB实现了图像轮廓的填充,实验结果表明,该方法简单有效。 相似文献
9.
10.
针对当前交通标志检测中存在小目标检测精度低、检测实时性不高以及目标漏检等问题,在YOLOv3基础上提出了一种融合了注意力机制与上下文信息的交通标志检测方法。首先通过改进通道注意力机制的压缩方式,对特征图通道重新进行标定;然后引入空间金字塔池化模块SPP;最后增加特征映射并拼接到原特征融合网络中的小目标部分,充分利用上下文信息增强对小目标的检测。实验结果表TT100K(Tsinghua-Tencent 100K)交通标志数据集上,与YOLOv3网络相比,在每秒传输帧数(Frame Per Second,FPS)变化不大的情况下,平均精度均值和小目标的精度均值分别提升3.03%和4.59%。实验结果证明了改进网络在小目标检测和整体检测中的有效性。 相似文献
11.
描述一个实时在线人数计数系统,该系统采用检测加跟踪的方法来实现人数计数功能。在检测阶段,采用MBLBP(multi-scale block LBP)特征,从运动区域上检测出行人。该特征速度快,并且在归一化下,能够适应多尺度的应用;在跟踪阶段,通过一个概率模型,将对行人的跟踪转化为对特征点的跟踪,并且在将检测目标和跟踪目标进行一一对应时,进一步利用各个目标内的特征点来完成相应的操作。最后用实际中不同场景下的视频,对系统的性能进行测试,同时还在一段公开的视频上进行了测试,实验结果表明,该系统能够在不同场景下较准确地实现人数计数功能。 相似文献
12.
视觉问答(visual question answering,VQA)是深度学习领域的一个新挑战,需要模型同时根据问题的语义和图片的内容进行推理并给出正确答案。针对视觉问答图片输入的多样性,设计了一种由两层注意力机制堆叠组成的层次注意力机制,帮助模型定位图片中与问题相关的信息,其中第一层注意力机制使用目标检测网络提取图片中物体的特征,第二层注意力机制引入问题特征。同时改进了现有的特征融合方式,消除对输入特征尺寸的限制。VQA数据集的测试结果显示,层次注意力机制使计数类问题的回答准确率提升了4%~5%,其他类型的问题回答准确率也有小幅提升。 相似文献
13.
14.
针对严重的尺度变化和遮挡导致在不同密集场景人群计数任务中性能差的问题,在密集场景识别网络(CSRNet)的基础上通过增加多尺度特征融合结构并引入空间注意力机制,提出了一种多尺度空间注意力特征融合网络(MAFNet).在MAFNet进行特征提取之前,需要对添加了人头标记的场景图进行高斯滤波生成真实密度图;此外,MAFNe... 相似文献
15.
针对大多数视觉注意模型都采用简单加权线性融合的方式获取显著图,提出了一个更符合生物学机制的基于贝叶斯推理的多线索视觉注意模型,模拟视觉系统腹侧通路与背侧通路中的视觉注意过程,采用贝叶斯推理的方式集成自顶向下与自底向上的信息,同时还集成了多种视觉线索,包括形状、颜色和上下文等.利用该模型进行遥感影像中的目标检测与定位的结果表明,该模型能有效的检测出目标并给出目标所在的位置. 相似文献
16.
针对传统人数统计方法因遮挡、光照变化导致准确率低的问题,提出一种适用于深度图的模拟降水分水岭算法(Depth map based Rainfalling Watershed Segmentation,D-RWS)。修复深度图并用混合高斯背景建模提取前景。利用D-RWS算法分割深度图中感兴趣的行人头部区域(Region Of Interest,ROI)。采用质心欧式距离最短法关联各帧中同一目标并跟踪计数。实验结果表明:提出的方法准确率能够达到98%以上,平均每帧处理时间为25 ms(40 f/s),准确率和实时性可满足实际应用的要求。 相似文献
17.
新冠疫情期间正确佩戴口罩可以有效防止病毒的传播,针对公共场所存在的人员密集、检测目
标较小等加大检测难度的问题,提出一种以 YOLOv5s 模型为基础并引入注意力机制融合多尺度注意力权重的
口罩佩戴检测算法。在 YOLOv5s 模型的骨干网络中分别引入 4 种注意力机制,抑制无关信息,增强特征图的
信息表达能力,提高模型对小尺度目标的检测能力。实验结果表明,引入 CBAM 模块后较原网络 mAP 值提升
了 6.9 个百分点,在 4 种注意力机制中提升幅度最明显,而引入 NAM 模块后在损失少量 mAP 的情况下使参
数量最少,最后通过对比实验选用 GIoU 损失函数计算边界框回归损失,进一步提升定位精度,最终结果较
原网络 mAP 值提升了 8.5 个百分点。改进模型在不同场景下的检测结果证明了该算法对小目标检测的准确
率和实用性。 相似文献
18.
显著性目标检测是遥感图像处理的重要研究领域,传统的方法通过逐个像素点的计算来实现目标检测,难以满足遥感图像大面积实时处理的要求。将视觉注意机制应用到遥感图像的显著性目标检测中,在训练阶段,将所有的目标融合成目标类,所有的背景融合成背景类,目标类的显著性均值与背景类的显著性均值的比值得到一个权重向量;在检测阶段,所有的特征图乘以权重向量得到自顶向下的显著性图;自顶向下和自底向上的显著性图融合生成全局显著性图。实验结果表明当目标和背景不是总成对出现时,该方法的检测结果优于Navalpakkam模型和Frintrop模型的检测结果。 相似文献