首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 63 毫秒
1.
针对最早截止时刻优先(earliest deadline first,EDF)调度算法队头阻塞任务导致资源利用率和配置端口复用率低下的问题,提出一种队头阻塞优化的EDF实时调度算法.通过定义无效阻塞任务并引入无效阻塞任务丢弃策略,提前判定和丢弃无法调度成功的任务,以利于后续任务调度;通过定义队头阻塞任务最早布局成功时刻...  相似文献   

2.
Hadoop集群作业的调度算法   总被引:1,自引:0,他引:1  
王峰 《程序员》2009,(12):119-121
Hadoop集群作业调度算法一直都是社区中讨论最热门的话题之一,当前有大量的设计与实现围绕着它展开。作业调度算法已经作为Hadoop实现中一个可插拔的组件,这也为大家能够对它进行更深入的探索打开了方便之门。  相似文献   

3.
高燕飞  陈俊杰  强彦 《计算机科学》2015,42(9):45-49, 69
目前,云计算环境具有动态、异构和海量多类型任务并发等特征,随着集群规模不断增大、用户QoS不断增多,现有调度算法越来越难以适应动态变化的环境及满足用户的需求。针对Hadoop平台下现有调度器不能根据作业运行状态和资源使用情况进行动态调整的问题,提出了Hadoop下基于作业分类的动态调度算法。该算法在使用朴素贝叶斯分类算法对队列中作业进行分类的过程中,根据各个作业的类型,预先设定类别权值,将队列中的作业分类,并引入效用函数,根据用户提交时的预期完成时间QoS和作业完成情况估算其作业完成时间,实现动态设置作业优先级。实验表明,使用提出的算法不仅能有效减少 作业的分类时间,而且能明显提高 动态性和用户QoS。  相似文献   

4.
风电场数据中心包含状态监测、数据采集等实时类作业和非实时类作业,采用C/S结构存在资源利用率不平衡、管理与维护成本高等缺点。设计了一种基于Hadoop云平台的数据中心架构;针对开源Hadoop平台现有FIFO调度器不能满足实时监测系统要求,在原有FIFO调度器的基础上,设计了一种双队列的作业调度器,综合考虑作业的截止时间和优先级来进行作业调度决策,实验结果表明,与FIFO调度器相比,双队列的作业调度器在集群负载较大时能够表现出较好的性能,保证实时类作业能够优先执行,为风电机组的安全运行提供保障。  相似文献   

5.
为有效提高Hadoop集群作业调度的效率,提出一种基于蚁群算法的自适应作业调度的方案,有效利用蚁群算法正反馈的优势特点,使Hadoop作业调度器更高效地对任务进行分配,提高整体架构的作业性能。实验结果表明,该算法能够很好的平衡资源负载,减少任务的完成时间,提高系统处理任务的性能。  相似文献   

6.
针对当前Hadoop集群固有的任务级调度分配方法在运行中存在的负载分布不均的现象,着重对集群节点的执行能力进行了分析与研究.提出了一种基于节点能力的任务自适应调度分配方法.该方法根据节点历史和当前的负载状态,以节点性能、任务特征、节点失效率等作为节点任务量调度分配的依据,并使各节点能自适应地对运行的任务量进行调整.实验结果表明集群的总任务完成时间明显地缩减,各节点的负载更加均衡,节点资源的利用更为合理.  相似文献   

7.
调度问题是目前云计算研究中的热点问题,其目的是研究如何协同云计算资源,使其能最大化利用.Hadoop是目前流行的开源云计算平台.针对Hadoop自带的作业调度算法的不足,研究和实现了基于优先级的加权循环算法.该算法能够区分用户服务等级,保证系统资源不被服务等级高的用户长时间占有,保证系统资源得到合理的利用.最后,对该算法进行实验及性能分析,验证该算法能够提高系统的整体效率和减少了相应时间,避免资源浪费.  相似文献   

8.
针对Hadoop异构集群中计算和数据资源的不一致分布所导致的调度性能较低的缺点,设计了一种基于Hadoop集群和改进Late算法的并行作业调度算法;首先,介绍了基于Hadoop框架和Map-Reduce模型的调度原理,然后,在经典的Late调度算法的基础上,对Map任务和Reduce任务的各阶段执行时间进度比例进行存储和更新,为了进一步地提高调度效率,将慢任务迁移到本地化节点或离数据资源较近的物理节点上,并给了基于改进Late算法的作业调度流程;为了验证文中方法,在Hadoop集群系统上测试,设定1个为Jobtracker主控节点和7个为TaskTracker节点,实验结果表明文中方法能实现异构集群的作业调度,且与其它方法比较,具有较低的预测误差和较高的调度效率。  相似文献   

9.
云计算集群中的资源存在异构和节点稳定性问题.异构资源的计算能力不同会导致较突出的作业任务同步问题,而某个节点的不稳定状态会使运行于该节点的任务大量备份或重新计算.针对上述两问题将严重影响集群作业的执行进度,在Hadoop平台下利用统计方法,提出一种资源调度算法,对计算资源较少的节点和不稳定状态的节点进行标志并降权,让集群尽可能调度资源较好的稳定节点.实验结果表明,该算法能够在一定程度上减少作业的周转时间,提高集群的效率和吞吐量.  相似文献   

10.
Hadoop平台中MapReduce调度算法研究   总被引:2,自引:0,他引:2  
MapReduce是一种新型的并行计算框架,在计算速度,容错性,可靠性等方面具有优势,因此得到了广泛的商业应用与科学研究。而调度算法作为MapReduce的核心组成部分,它的优劣成为了直接影响MapReduce性能的关键因素,因而得到了很大的关注。在介绍和分析MapReduce并行计算模型的基础上,介绍了几种相关的模型改进,并基于Hadoop平台,重点研究了MapReduce的常用调度算法及改进算法。通过对比分析,就MapReduce未来的发展进行了进一步的探讨,为其调度算法的改进提供有效的方法。  相似文献   

11.
李冠辰 《软件》2013,(12):127-131
最近几年,以微博为首的社交网络迅猛发展,这些平台上包含了网民对于时事热点的观点,对生活和人际关系的看法等大量有价值的信息和资源。由于微博数据非常庞大又难以获取等困难,如何有效地对社交网络进行数据挖掘,是近两年数据挖掘研究的重点和热点。本工作设计和实现了一个基于Hadoop的并行社交网络挖掘系统,包含了分布式数据库,并行爬虫,并行数据处理和并行数据挖掘算法集,可以有效地获取和分析挖掘海量的社交网络数据,为社团分析,用户行为分析,用户分类,微博分类等工作提供支持。  相似文献   

12.
传统的K-means算法虽然具有很多优点,但聚类准则函数对簇密度不均的数据集分类效果较差.文中在加权标准差准则函数的基础之上,增加了收敛性判定,并在Hadoop平台上提出了一种基于MapReduce编程思想设计与优化的K-means并行算法.与传统的K-means算法相比,设计的并行算法在聚类结果的准确性、加速比、扩展性、收敛性等方面都有显著的提高,降低了因簇密度不均引起误分的概率,提高了算法的聚类精度,并且数据规模越大、节点越多,优化的效果就越明显.  相似文献   

13.
云计算领域是IT发展的方向,其重要性正日益凸显,Hadoop是云计算领域的一项具体技术。该文以开源的分布式计算框架Hadoop为基础,详细介绍了在学院网络实验室中搭建云计算平台Hadoop教学环境的过程,并给出了具体实现方案。  相似文献   

14.
当今云计算环境下,Hadoop已经成为大数据处理的事实标准。然而云计算具有大规模、高复杂和动态性的特点,容易导致故障的发生,影响Hadoop上运行的作业。虽然Hadoop具有内置的故障检测和恢复机制,但云环境中不同节点负载大小的变化,被调度的作业仍然导致失败。针对此问题提出自响应故障感知的检测调度方法,对异构环境负载能力的不同,而做出服务器快节点和慢节点的判断,把作业分配调度到合适的节点上执行,调整任务决策来尽可能的防止任务失败的发生。最后在Hadoop框架下与基本调度器进行实验性能比较,结果显示该方法减少作业失败率最高达19%,并缩短了作业执行时间,同时也减少CPU和内存的使用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号