共查询到16条相似文献,搜索用时 62 毫秒
1.
目的 为满足语义分割算法准确度和实时性的要求,提出了一种基于空洞可分离卷积模块和注意力机制的实时语义分割方法。方法 将深度可分离卷积与不同空洞率的空洞卷积相结合,设计了一个空洞可分离卷积模块,在减少模型计算量的同时,能够更高效地提取特征;在网络输出端加入了通道注意力模块和空间注意力模块,增强对特征的通道信息和空间信息的表达并与原始特征融合,以进一步提高特征的表达能力;将融合的特征上采样到原图大小,预测像素类别,实现语义分割。结果 在Cityscapes数据集和CamVid数据集上进行了实验验证,分别取得70.4%和67.8%的分割精度,速度达到71帧/s,而模型参数量仅为0.66 M。在不影响速度的情况下,分割精度比原始方法分别提高了1.2%和1.2%,验证了该方法的有效性。同时,与近年来的实时语义分割方法相比也表现出一定优势。结论 本文方法采用空洞可分离卷积模块和注意力模块,在减少模型计算量的同时,能够更高效地提取特征,且在保证实时分割的情况下提升分割精度,在准确度和实时性之间达到了有效的平衡。 相似文献
2.
视觉感知是无人驾驶技术中的重要一环,而语义分割技术又是实现视觉感知的主要技术手段之一.现在的语义分割技术多采用计算量大、内存占用高的空洞卷积来提取高分辨率特征图,从而导致现在主流的语义分割网络分割速度不足,无法有效应用于无人驾驶的场景中.针对这一问题,提出了一种实时性更好的语义分割网络.首先,采用了一种轻量级的卷积神经... 相似文献
3.
4.
针对现有语义分割算法参数量过多、内存占用巨大导致其很难满足自动驾驶需要等现实应用的问题,提出一种基于可分离金字塔模块(SPM)的新颖、有效且轻量的实时语义分割算法。首先,利用特征金字塔形式的分解卷积和扩张卷积来构建瓶颈结构,从而以一种简单但有效的方式提取局部和上下文信息;然后,提出基于计算机视觉注意力的上下文通道注意力(CCA)模块,来利用深层语义修改浅层特征图通道权重优化分割效果。实验结果显示:所提出的算法在Cityscapes测试集上以每秒91帧的速度达到了71.86%的平均交并比(mIoU)。相较高效残差分解卷积网络(ERFNet),所提算法mIoU提高了3.86个百分点,处理速度是其2.2倍;与最新的非局部高效实时算法(LRNNet)相比,所提算法mIoU略低0.34个百分点,但处理速度每秒上升了20帧。实验结果表明,所提算法有助于完成如自动驾驶中要求的高效、准确的街道场景图像分割任务。 相似文献
5.
传统U-Net网络模型大,处理图片速度慢,难以适应工业生产中实时的需求.针对该问题,设计并实现了一个轻量级全卷积语义分割网络LU-Net.LU-Net网络以U-Net框架为主体,结合MobileNet-V2的思想,利用深度可分离卷积参数少、计算量小的特点轻量化网络模型.网络综合利用bottleneck模块与普通卷积的优... 相似文献
6.
目的 为了解决经典卷积神经网络无法满足图像中极小目标特征提取的准确性需求问题,本文基于DeepLabv3plus算法,在下采样过程中引入特征图切分模块,提出了DeepLabv3plus-IRCNet(IR为倒置残差(inverted residual,C为特征图切分(feature map cut))图像语义分割方法,支撑图像极小目标的特征提取。方法 采用由普通卷积层和多个使用深度可分离卷积的倒置残差模块串联组成的深度卷积神经网络提取特征,当特征图分辨率降低到输入图像的1/16时,引入特征图切分模块,将各个切分特征图分别放大,通过参数共享的方式提取特征。然后,将每个输出的特征图进行对应位置拼接,与解码阶段放大到相同尺寸的特征图进行融合,提高模型对小目标物体特征的提取能力。结果 本文方法引入特征图切分模块,提高了模型对小目标物体的关注,充分考虑了图像上下文信息,对多个尺度下的各个中间层特征进行融合,提高了图像分割精度。为验证方法的有效性,使用CamVid(Cambridge-driving labeled video database)数据集对提出的方法进行验证,平均交并比(mean intersection over union,mIoU)相对于DeepLabv3plus模型有所提升。验证结果表明了本文方法的有效性。结论 本文方法充分考虑了图像分割中小目标物体的关注度,提出的DeepLabv3plus-IRCNet模型提升了图像分割精度。 相似文献
7.
近年来随着深度学习技术的不断发展,涌现出各种基于深度学习的语义分割算法,然而绝大部分分割算法都无法实现推理速度和语义分割精度的兼得.针对此问题,提出一种多通道深度加权聚合网络(MCDWA_Net)的实时语义分割框架.\:该方法首先引入多通道思想,构建一种3通道语义表征模型,3通道结构分别用于提取图像的3类互补语义信息:低级语义通道输出图像中物体的边缘、颜色、结构等局部特征;辅助语义通道提取介于低级语义和高级语义的过渡信息,并实现对高级语义通道的多层反馈;高级语义通道获取图像中上下文逻辑关系及类别语义信息.\:之后,设计一种3类语义特征加权聚合模块,用于输出更完整的全局语义描述.\:最后,引入一种增强训练机制,实现训练阶段的特征增强,进而改善训练速度.\:实验结果表明,所提出方法在复杂场景中进行语义分割不仅有较快的推理速度,且有很高的分割精度,能够实现语义分割速度与精度的均衡. 相似文献
8.
应用机器视觉实现磁片表面缺陷的自动检测可以提高生产效率、降低生产成本。深度卷积神经网络具有高精度的分类性能,尤其在图像识别方面有显著的优点。但是目前提出的深度神经网络模型,由于参数量和计算量的巨大,在工业生产流水线上不能满足实时检测的需求。针对这个问题,基于深度可分离卷积和通道混洗,提出了一种轻量级高效低延时的卷积神经网络架构MagnetNets。为了评估MagnetNets网络模型的性能,将MagnetNets网络模型与MobileNets、ShuffleNet、Xception、MobileNetV2在公开数据集ImageNet中做了对比实验。然后将MagnetNets网络模型应用在磁片缺陷检测系统中进行缺陷检测。实验结果表明,提出的网络架构显著地减少参数数量,具有良好的性能。同时在磁片缺陷检测系统中减少了延时,提高检测速度,缺陷检测识别率达到了97.3%。 相似文献
9.
针对目前高精度的语义分割模型普遍存在计算复杂度高、占用内存大,难以在硬件存储和计算力有限的嵌入式平台部署的问题,从网络的参数量、计算量和性能3个方面综合考虑,提出一种基于改进DeepLabV3+的高效语义分割模型.该模型以MobileNetV2为骨干网络,在空洞空间金字塔池化(AS-PP)模块中并联混合带状池化(MSP... 相似文献
10.
11.
针对现阶段语义分割网络存在的空间和通道特征不匹配、小目标物体像素丢失等问题,设计了一种基于空间特征提取和注意力机制的双路径语义分割算法。空间信息路径利用四倍下采样来保留高分辨率特征,并引入空间特征提取模块融合多尺度空间信息,加强网络对小目标物体的识别能力;采用一条结合双阶通道注意力的语义上下文路径提取判别特征,使深层特征能够指导浅层特征捕捉更精确的语义信息,从而降低精度损失。在CamVid和Aeroscapes数据集上验证该算法,平均交并比分别可达70.5%和51.8%,相比于当前主流的双路径语义分割模型有所提升,结果验证了所提算法的有效性。 相似文献
12.
针对深度学习中道路图像语义分割模型参数量巨大以及计算复杂,不适合于部署在移动端进行实时分割的问题,提出了一种使用深度可分离卷积构建的轻量级对称U型编码器-解码器式的图像语义分割网络MUNet.首先设计出U型编码器-解码器式网络;其次,在卷积块之间设计稀疏短连接;最后,引入了注意力机制与组归一化(GN)方法,从而在减少模... 相似文献
13.
针对目前语义分割算法难以取得实时推理和高精度分割间平衡的问题,提出压缩提炼网络(SRNet)以提高推理的实时性和分割的准确性。首先,在压缩提炼(SR)单元中引入一维(1D)膨胀卷积和类瓶颈结构单元,从而极大地减少模型的计算量和参数量;其次,引入多尺度空间注意(SA)混合模块,从而高效地利用浅层特征的空间信息;最后,通过堆叠SR单元构成编码器,并采用两块SA单元在编码器的尾部构成解码器。实验仿真表明,SRNet在仅有30 MB参数量及8.8×109每秒浮点操作数(FLOPS)的情况下,仍可在Cityscapes数据集上获得68.3%的平均交并比(MIoU)。此外,所提模型在单块NVIDIA Titan RTX卡上实现了12.6 帧每秒(FPS)的前向推理速度(输入像素的大小为512×1 024×3)。实验结果表明,所设计的轻量级模型SRNet很好地在准确分割和实时推理间取得平衡,适用于算力及功耗有限的场合。 相似文献
14.
针对室内人群目标尺度和姿态多样性、人头目标易与周围物体特征混淆的问题,提出了一种基于多级特征和混合注意力机制的室内人群检测网络(MFANet)。该网络结构包括三部分,即特征融合模块、多尺度空洞卷积金字塔特征分解模块以及混合注意力模块。首先,通过将浅层特征和中间层特征信息融合,形成包含上下文信息的融合特征,用于解决浅层特征图中小目标语义信息不丰富、分类能力弱的问题;然后,利用空洞卷积增大感受野而不增加参数的特性,对融合特征进行多尺度分解,形成新的小目标检测分支,实现网络对多尺度目标的定位和检测;最后,用局部混合注意力模块来融合全局像素关联空间注意力和通道注意力,增强对关键信息贡献大的特征,来增强网络对目标和背景的区分能力。实验结果表明,所提方法在室内监控场景数据集SCUT-HEAD上达到了0.94的准确率、0.91的召回率和0.92的F1分数,在召回率、准确率和F1指标上均明显优于当前用于室内人群检测的其他算法。 相似文献
15.
针对语义分割中残差网络并不能完好地提取图像信息和分割效果差的问题,提出一种联合特征金字塔模型(JFP)用来融合残差网络的输出特征,并结合暗黑空间金字塔池化模型(ASPP)进一步提取特征。在解码部分应用简单的解码结构,恢复图像尺寸完成语义分割;同时引入注意力模型作为辅助语义分割网络,辅助神经网络进行训练。该方法分别在Pascal VOC 2012数据集和增强的Pascal VOC 2012数据集上对网络进行训练,并在Pascal VOC 2012的验证集上进行测试,其平均交并集之比(mIoU)分别达到了78.55%和80.14%,表明该方法具有良好的语义分割性能。 相似文献
16.
语义分割算法能够对图像进行像素级的分类,广泛应用于无人驾驶、医学图像处理和工业自动化等领域,具有重要研究价值.对语义分割算法的研究集中在提升分割精度、降低参数量和增加推理速度3个方面.经典的轻量语义分割算法ENet使用多层卷积的编解码器和大量的空洞卷积来避免过多的下采样和利用空间信息,虽能保证一定的空间信息完整性与较大... 相似文献