首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Results of an experimental study, which measured thermally-induced pore pressure and corresponding concrete temperatures in high-strength concrete (HSC) and normal strength concrete (NSC), to quantify the effects of factors influencing pore pressure buildup and potential for explosive spalling in HSC and NSC are presented. The specimens are 100 × 200 × 200 mm concrete blocks, heated to a maximum temperature of 600°C (1,112°F) at 5°C/min (41°F/min) and 25°C/min (77°F/min). The complex heat-induced moisture transport process, which varied with specific levels of concrete temperature and significantly influenced the developments of pore pressure and concrete temperature, is explained. Pore pressure developments are shown to be directly related to the moisture transport process and have a significant influence on occurrence of explosive spalling. Effects of water-to-cementitious materials ratios (w/cm), curing conditions, heating rates, and polypropylene (PP) fibers on pore pressure buildup and explosive spalling are quantified and described.  相似文献   

2.
A mathematical model of hygro-thermo-mechanical phenomena in heated concrete, treated as multiphase porous material is briefly presented. Some modifications necessary to analyse high–temperature performance of a concrete containing the PP-fibres have been introduced, experimentally validated and applied for analysis of performance of a concrete tunnel lining during a 10-MW fire and the ISO standard fire. Three methods for protecting concrete structures against excessive degradation in fire conditions have been numerically analysed by means of the computer model. The analysed protection methods are based either upon application on a structure surface of a reflective layer, or covering it with a protective layer made of a very porous concrete or an addition of the PP fibres to the concrete mix. Efficiency of these methods has been numerically analysed in thermal conditions corresponding to the ISO-834 standard fire. The results obtained show that even relatively simple methods, like application a protective layer or increasing the surface reflectance, can retard to some extent concrete degradation during a fire.  相似文献   

3.
    
Ultra high performance strain hardening cementitious composites (UHP-SHCC) is a special type of cement-based composite material with outstanding mechanical and protective performance at room temperature. But its fire performance is unknown and there is a lack of research in this aspect. This study presents an experimental program to study fire resistance of UHP-SHCC under two aspects, viz. high-temperature explosive spalling resistance and residual mechanical performance after a fire. Both compressive strength and tensile strength of UHP-SHCC were found to deteriorate with increasing exposure temperature. Tensile strain-hardening feature of UHP-SHCC would be lost at 200 °C and above. It was found that PE fibers are found not effective in mitigating explosive spalling, although they start to melt at 144 °C. FE-SEM (Field Emission Scanning Electron Microscopy) and EDX (Energy Dispersive X-ray) techniques were used to study the state of fiber, fiber/matrix interaction, and microcracks development. Microscopic study found that melted PE fibers were still present in the cementitious matrix, and the melting did not introduce more microcracks. Furthermore, it was difficult for melted PE fibers to diffuse through the matrix, thus providing the reason that PE fibers did not mitigate explosive spalling in UHP-SHCC.  相似文献   

4.
    
This study investigates the flexural and cracking behaviors of ultra-high-performance fiber-reinforced concrete (UHPFRC) before and after exposure to cryogenic temperatures for liquefied natural gas (LNG) storage tank applications. Normal concrete (NC), which has been used to make LNG storage tanks in Korea, was also considered for comparison. In order to evaluate the cracking resistance of NC and UHPFRC, several edge-type slabs were fabricated and tested by restraining their thermal deformation. Four-point bending tests were also performed to estimate the flexural performance before and after cryogenic cooling. Test results indicate that UHPFRC exhibited higher resistance to microcrack formation under these conditions. UHPFRC also showed substantially better flexural performance, both before and after exposure to cryogenic cooling, compared to NC. In addition, the microcracks in UHPFRC that were induced by the pre-cracking load were suddenly and effectively filled with calcium carbonate (CaCO3), which was formed by a chemical reaction between melting water and calcium ions. This was verified by energy dispersive X-ray spectroscopy analysis. CaCO3 formation resulted in enhanced flexural performance, including higher strength, deflection capacity, and energy absorption capacity, as compared to the virgin UHPFRC specimens without any cracks.  相似文献   

5.
Confined crack tip plasticity model is employed to predict time independent fatigue crack growth rate (FCGR) behavior of HAYNES® 282® alloy at temperatures 1200F and 1400F. Crack growth tests were done in lab air, vacuum and steam environments at load ratios R = Kmin/Kmax ranging from 0.05 to 0.5. Calibrated model predicts average cyclic crack growth rate behavior of the material reasonably well. Predictions do not capture the accelerated fatigue crack growth rates observed in the data at low load levels. Such effects are believed to be caused by environmentally driven factors, which are not expected to be predicted by plasticity based models.  相似文献   

6.
High-performance concrete (HPC) is prone to explosive spalling when exposed to fire, which may lead to failure of the concrete elements. Polypropylene fibers (PP) are often added to HPC, as upon their melting they create channels through which water vapor is evacuated, preventing the build-up of high vapor pressures. In self-compacting HPC (HPSCC), the amount of PP fibers needs to be limited in order to keep the self-compacting properties, which may reduce the fire resistance.In this paper, a novel strategy to reduce fire spalling in HPSCC is illustrated, based on adding small particles of superabsorbent polymers (SAP) during mixing. The SAP end up as empty macropores, similar to air voids, in the HPSCC matrix. The PP fibers-SAP voids system percolates at a lower fiber loading than the fibers alone, allowing maintenance of the self-compacting properties while reducing substantially the fire spalling. In particular, in this paper it is shown how addition of SAP is able to reduce fire spalling in thin-walled HPSCC slabs prestressed with carbon fibre reinforced plastic reinforcement.  相似文献   

7.
超高性能混凝土的火灾高温性能研究综述   总被引:1,自引:0,他引:1  
朋改非  牛旭婧  成铠 《材料导报》2017,31(23):17-23
超高性能混凝土(Ultra-high-performance concrete,UHPC),以其突出的优点如超高强度与超高耐久性等,符合可持续发展战略,是混凝土科技发展的主要方向之一。近年来,UHPC的火灾高温性能吸引了广泛关注。由文献综述可知,高温会引发UHPC的爆裂和力学强度变化。爆裂主要由蒸汽压机理控制,蒸汽来源于内部游离水,高的内部湿含量往往导致剧烈的高温爆裂,有效的抑制措施是掺加聚合物纤维如聚丙烯(Polypropylene,PP)纤维。关于钢纤维对UHPC抗高温爆裂性的影响,还存在争议。高温作用后UHPC的残余强度在常温至300℃或400℃范围内有所增长,而在更高的温度下则为单调下降。残余强度增长是高温促进混凝土内部的一系列化学变化所引起。最新研究发现,组合养护是有效改善UHPC火灾高温性能的新方法,可避免爆裂发生。  相似文献   

8.
    
Tension stiffening is still a matter of discussion into the scientific community; the study of this phenomenon is even more relevant in structural members where the total reinforcement consists of a proper combination of traditional rebars and steel fibers. In fact, fiber reinforced concrete is now a worldwide-used material characterized by an enhanced behavior at ultimate limit states as well as at serviceability limit states, thanks to its ability in providing a better crack control.This paper aims at investigating tension stiffening by discussing pure-tension tests on reinforced concrete prisms having different sizes, reinforcement ratios, amount of steel fibers and concrete strength. The latter two parameters are deeply studied in order to determine the influence of fibers on crack patterns as well as the significant effect of the concrete strength; both parameters determine narrower cracks characterized by a smaller crack width.  相似文献   

9.
    
This study proposes a comprehensive analysis on the structural performance of reinforced Recycled Aggregate Concrete members. Particularly, it summarizes the results of an experimental investigation aimed at analyzing the tension stiffening behavior of normal and high strength class concretes produced with Recycled Concrete Aggregates (RCAs). The mixtures were proportioned in order to achieve 25 and 65 MPa of compressive strength and, moreover, several recycled-to-natural coarse aggregates replacement ratios were considered: 0%, 25% and 50%. The results derived from this type of test furnish a comprehensive analysis on both the steel-to-matrix interaction and the crack formation and propagation on concrete elements as well as distributed cracking mechanisms. Using a finite difference numerical model, the experimental results are used to back-calculate and identify the steel-to-concrete bond slip law. Also, it is an alternative mean of developing the stress-crack-width law for concrete in tension. The results showed that the use of recycled concrete aggregate does not affect the resulting concrete performance and, therefore, the RCAs can be successfully employed, up to the levels analyzed herein, for the production of structural elements made with normal and high strength class concrete mix.  相似文献   

10.
混凝土材料层裂强度的实验研究   总被引:15,自引:0,他引:15       下载免费PDF全文
利用Φ74大尺寸Hopkinson压杆和混凝土长杆试件研究了混凝土材料的层裂强度及其应变率效应.入射的压缩波通过压杆透入试件并反射成拉伸波而形成层裂.实验中采取在试件上多点贴应变片,讨论了应力波在混凝土试件中传播的波形弥散和幅值衰减,并在考虑了损伤演化影响的基础上确定了试件材料的层裂强度.对某种普通混凝土在不同应变率下的测试显示层裂强度受应变率影响明显.结果表明,本文提出了一种测定混凝土层裂强度的有效方法.  相似文献   

11.
The basic defects occuring in explosive clad plates were properly systemized and the reasons of their formation were explained. Cases of cracks and delaminations in explosive clad plates were examined in this work. Various values of tensile stresses coming from loading and unloading waves were analysed, as they were the main reason of defects. The defects were connected with properties of welded materials in the joint area and beyond it. Some practical aspects of this process were shown as well.  相似文献   

12.
A three-dimensional meshfree method for modeling arbitrary crack initiation and crack growth in reinforced concrete structure is presented. This meshfree method is based on a partition of unity concept and formulated for geometrically non-linear problems. The crack kinematics are obtained by enriching the solution space in order to capture the correct crack kinematics. A cohesive zone model is used after crack initiation. The reinforcement modeled by truss or beam elements is connected by a bond model to the concrete. We applied the method to model the fracture of several reinforced concrete structures and compared the results to experimental data.  相似文献   

13.
I. Iskhakov  Y. Ribakov   《Materials & Design》2008,29(8):1616-1622
The paper is focused on analysis of two-layer bending pre-stressed beams consisting of steel fibered (SF) high strength concrete (HSC) in compressed zone and normal strength concrete (NSC) in tensile zone. Investigation of such beams is important for RC structural design, because calculation of fibers volume ratio is significant, like that of reinforcing steel bars for usual RC elements. In other words, such elements are made of high performance concrete (HPC). There is a growing tendency that more effective HPC structures replace NSC ones, first of all in pre-stressed elements. Definition of the HSC class lower limit, to be used in the compressed zone of a two-layer pre-stressed beam, is given. It was demonstrated that SF have little effect on the beam elastic deflections. However, the ultimate deflections of the section increase because additional potential for plastic energy dissipation (PED) in the bending element. NSC, used in the section tensile zone, contributes additionally about 20% to the section’s PED potential compared to one-layer HSC beams. In order to guarantee sufficient section’s ductility of the pre-stressed beams, required to withstand dynamic loadings, a minimum SF ratio is proposed to be considered. The fibers take the tensile stresses, yielding cracks in the concrete matrix. A design method for calculation of the SF volume ratio, as a function of required ductility, is proposed. A numerical example, illustrating the efficiency of this method is presented.  相似文献   

14.
黄增泽 《工程爆破》2003,9(3):75-76,74
简要介绍了两起火灾事故。根据现场勘察和深入分析 ,认为轮碾机长时间空转 ,碾砣与碾盘直接摩擦生热而引燃残药 ,是轮碾机着火的真正原因 ;而炸药包装材料被炸药爆炸时产生的高温引燃并被冲击波抛出 ,是试验场附近的植被着火的直接原因。为避免今后类似事故的发生 ,提出了相应的防范措施 ,强调了完善规章制度和加强管理的重要性。  相似文献   

15.
简要介绍了两起火灾事故。根据现场勘察和深入分析 ,认为轮碾机长时间空转 ,碾砣与碾盘直接摩擦生热而引燃残药 ,是轮碾机着火的真正原因 ;而炸药包装材料被炸药爆炸时产生的高温引燃并被冲击波抛出 ,是试验场附近的植被着火的直接原因。为避免今后类似事故的发生 ,提出了相应的防范措施 ,强调了完善规章制度和加强管理的重要性。  相似文献   

16.
文章介绍了利用膨化硝铵炸药,再辅助以乳化基质制得的复配型炸药掺入多孔粒状铵油炸药中,成功制造一种适应风动机械装药的流散性好、抗水性能强、爆破效果好的新型炸药.  相似文献   

17.
When steel bars are placed in a concrete structure, the evaluation of crack width and crack spacing is generally required in the serviceability stage. According to more or less aggressive conditions, crack width shall be limited in order to avoid, for instance, the corrosion of steel reinforcement. The presence of fibers in the concrete cast may help to achieve this goal, since fibers remarkably increase the bridging actions across a crack. However, new mechanical models are needed to evaluate these effects, which are generally neglected by classical approaches. Code requirements are based on semi-empirical formulae, in which the average structural performances are analyzed by referring to a single cross-section, instead of a wide portion of an R/FRC or RC element in bending. To evaluate crack patterns more accurately, a suitable block model is therefore introduced in this paper. With the new approach, the bridging effects of fibers, as well as the bond-slip mechanism between steel bars and FRC in tension, are taken into account. By means of such model, it is possible ble to predict at one time the values of crack width, crack spacing, and crack depth, and compare them to data obtained by bending tests on concrete beams. Moreover, to evaluate the possible crack patterns in R/FRC tunnel linings, the proposed block model has been extended to the serviceability stage of massive structures subjected to combined compressive and bending actions. This paper follows a previous work by the same authors (Chiaia et al. Mater Struct 40(6):593–694, 2007) and completes the design procedures for FRC cast-in-place tunnel linings.  相似文献   

18.
The European Union regulations require safety and health protection of workers who are potentially at risk from explosive atmosphere areas. According to the requirements, the operators of installations where potentially explosive atmosphere can occur are obliged to produce an explosion protection document. The key objective of this document is the assessment of explosion risks. This paper is concerned with the so-called explosion layer of protection analysis (exLOPA), which allows for semi-quantitative explosion risk assessment for process plants where explosive atmospheres occur. The exLOPA is based on the original work of CCPS for LOPA but takes into account some typical factors appropriate for explosion, like the probability that an explosive atmosphere will occur, probability that sources of ignition will be present and become effective as well as the probability of failure on demand for appropriate explosion prevention and mitigation means.  相似文献   

19.
Book Review     
The evaluation of pressure vessel integrity affected by pressurized thermal shock (PTS) events caused by emergency cooling due to a small leak break is being addressed. Comprehensive numerical and experimental investigations were performed at MPA Stuttgart and the HDR plant.

During cold water feeding necessary to maintain core cooling under accident conditions, high temperature gradients arise which cause thermal stresses in the walls near the inner surface of the reactor pressure vessel (RPV). Supposing there are flaws in the inner wall the thermal stresses can increase the stress intensity considerably compared with the stresses caused by internal pressuse. st the same time, the fract/fre toughness of the ferritic reactor pressure vessel matenalls reduced through the coolmg process. Therefore, the possibility of stable or unstable crack growth cannot be ruled out.

This paper describes numerical and experimental investigations with large-scale heavy section specimens with circumferential and semi-elliptical cracks. The whole range of material toughness relevant for RPV integrity studies was tested. A full-scale vessel test at the HDR plant is reported, too. The experimental results were evaluated for validation of the analytical and numerical methods. Results from these investigations contribute to resolving a generic issue in the area of reactor pressure vessel integrity.  相似文献   

20.
本文介绍了碱骨料反应的定义以及碱骨料反应发生的条件、对比了国内外抑制碱骨料反应的主要措施以及用于高性能混凝土中的抑制措施研究状况,通过比较可以得出抑制碱骨料反应的主要措施为:(1)使用非活性集料;(2)控制水泥和混凝土碱含量(Na2O,Na2O+0.658K2O);(3)控制湿度;(4)使用混合材或化学外加剂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号