首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Several random mutations have been generated in the psbA2 gene of Synechocystis sp. PCC 6803 [Narusaka, Y., Murakami, A., Saeki, J., Kobayashi, H., and Satoh, K. (1996) Plant Sci. 115, 261-266]. The phototolerant mutant (I6) carrying all the amino acid substitutions in the lumenal side of D1 protein (S322I, I326F, and F328S) and a site-directed mutant of the same phenotype (NDFS) substituted in the stromal side of the protein (N234D and F260S) were characterized by thermoluminescence measurements. We observed (1) no significant differences in their growth rates at either low or high light irradiance, (2) a downshifted B-band in the NDFS mutant, (3) an upshifted Q-band in the I6 mutant, and (4) a damped period four oscillation of thermoluminescence in the B-band of both mutants. By examining the possible implications of these results on the redox properties of the PS II components in the mutants, we concluded that equilibrium constants for sharing an electron between the primary (QA) and secondary acceptor plastoquinones (QB) are decreased in both mutants.  相似文献   

3.
We investigated the F0F1 ATP synthase of the cyanobacterium, Synechocystis sp. PCC 6803. The gene for the F0-subunit b', a peptide probably located at the interface between F0 and F1, has been partially or completely evicted from the bacterial genome. We found that the complete deletion of the subunit was lethal to the cells. However, the subunit could be truncated down to its hydrophobic N-terminal stretch without much harm. Since the gene for b' probably shares a common ancestor with the gene for subunit b and emerged by gene duplication, we propose that b' gathered a new role during evolution, perhaps in the regulation of photophosphorylation.  相似文献   

4.
5.
Cyanobacteria are photoautotrophic organisms capable of oxygen-producing photosynthesis similar to that in eukaryotic algae and plants, and because of this, they have been used as model organisms for the study of the mechanism and regulation of oxygen-producing photosynthesis. To understand the entire genetic system in cyanobacteria, the nucleotide sequence of the entire genome of the unicellular cyanobacterium Synechocystis sp. PCC6803 has been determined. The total length of the circular genome is 3,573,470 bp, with a GC content of 47.7%. A total of 3,168 potential protein coding genes were assigned. Of these, 145 (4.6%) were identical to reported genes, and 1,259 (39.6%) and 342 (10.8%) showed similarity to reported and hypothetical genes, respectively. The remaining 1,422 (45.0%) showed no apparent similarity to any genes registered in the databases. Classification of the genes by their biological function and comparison of the gene complement with those of other organisms have revealed a variety of features of the genetic information characteristic of a photoautotrophic organism. The sequence data, as well as other information on the Synechocystis genome, is presented in CyanoBase on WWW [http:/(/)www.kazusa.or.jp/cyano/].  相似文献   

6.
The cyanobacterium Synechocystis sp. strain PCC 6803 exhibited circadian rhythms in complete darkness. To monitor a circadian rhythm of the Synechocystis cells in darkness, we introduced a PdnaK1::luxAB gene fusion (S. Aoki, T. Kondo, and M. Ishiura, J. Bacteriol. 177:5606-5611, 1995), which was composed of a promoter region of the Synechocystis dnaK1 gene and a promoterless bacterial luciferase luxAB gene set, as a reporter into the chromosome of a dark-adapted Synechocystis strain. The resulting dnaK1-reporting strain showed bioluminescence rhythms with a period of 25 h (on agar medium supplemented with 5 mM glucose) for at least 7 days in darkness. The rhythms were reset by 12-h-light-12-h-dark cycles, and the period of the rhythms was temperature compensated for between 24 and 31 degrees C. These results indicate that light is not necessary for the oscillation of the circadian clock in Synechocystis.  相似文献   

7.
A mutant strain of the cyanobacterium Synechocystis PCC 6803, called PAL, (PC-, delta apcAB, delta apcE), lacking phycocyanin, allophycocyanin and the core-membrane linker (Lcm), was constructed. The strain was characterized by absorption and fluorescence spectroscopy. The mutant compensates for the absence of the major PS II antenna by increasing its PS II/PS I ratio. It is stable and grows well albeit more slowly than wild type.  相似文献   

8.
The phylogenetic relationships of gibbons are still open questions. We have sequenced a mitochondrial cytochrome b gene fragment from Hylobates hoolock, H. concolor, H. lar and H. syndactylus. Combined with the sequences from Garza and Woodruff (1992), we have constructed a comprehensive phylogenetic tree of the gibbons using the maximum-parsimony analysis. Our results suggested that the gibbons should be divided into four groups: (1) hoolock, (2) syndactylus, (3) agilis, lar, muelleri and klossi, and (4) concolor, which correspond to the four morphological subgenera. There are at least four distinct clades in the concolor population, which indicates that the concolor may be divided into at least four species. Therefore, those four clades should be managed separately with the same conservation effort.  相似文献   

9.
10.
11.
PsaA and PsaB are homologous integral membrane proteins that form the heterodimeric core of photosystem I. Domain-specific antibodies were generated to examine the topography of PsaA and PsaB. The purified photosystem I complexes from the wild type strain of Synechocystis sp. PCC 6803 were treated with eight proteases to study the accessibility of cleavage sites in PsaA and PsaB. Proteolytic fragments were identified using the information from N-terminal amino acid sequencing, reactivity to antibodies, apparent mass, and specificity of proteases. The extramembrane loops of PsaA and PsaB differed in their accessibility to proteases, which indicated the folded structure of the loops or their shielding by the small subunits of photosystem I. NaI-treated and mutant photosystem I complexes were used to identify the extramembrane loops that were exposed in the absence of specific small subunits. The absence of PsaD exposed additional proteolytic sites in PsaB, whereas the absence of PsaE exposed sites in PsaA. These studies distinguish PsaA and PsaB in the structural model for photosystem I that has been proposed on the basis of x-ray diffraction studies (Krauss, N., Schubert, W.-D., Klukas, O., Fromme, P., Witt, H. T., and Saenger, W. (1996) Nat. Struct. Biol. 3, 965-973). Using osmotically shocked cells for protease treatments, the N terminus of PsaA was determined to be on the n side of the photosynthetic membranes. Based on these data and available published information, we propose a topological model for PsaA and PsaB.  相似文献   

12.
Regions in the large lumenally exposed region (loop E) of CP47 affect properties of the watersplitting system in photosystem II (PS II). To investigate the role of these regions, we developed a method for functional complementation of obligate photoheterotrophic mutants carrying a deletion in one such region. Using an obligate photoheterotrophic mutant that carries a short deletion (delta (D440-P447) in loop E of CP47, completely degenerate sequences of eight codons in length were introduced at the site of the deletion. Transformants that were complemented to photoautotrophic growth were selected, and 20 such mutants were studied. Sequence analysis revealed that, as expected, in each of them CP47 had been restored to its wild-type length. However, none of the amino acid residues in the deleted region were found to be critical for function. A negatively charged residue at position 440 and a positively charged one at position 444 were favored but not required. Photoautotrophic growth of mutants obtained varied from almost normal to significantly impaired. The mutants contained 20-100% of the amount of PS II present in the wild type, with PS II amounts correlating with the initial rates of oxygen evolution. The mutants had a high rate of photoinactivation, and many mutants showed an up to 1000-fold increase in chloride requirement for photoautotrophic growth. These phenotypic effects were a direct consequence of the CP47 mutations and were not caused by altered binding of one of the extrinsic proteins. No particular amino acid residues in positions 440-447 of CP47 were found to be indispensable for photoautotrophic growth, and many amino acid combinations in this region support PS II function. However, the mutagenized region is shown to interact with the oxygen-evolving site of PS II and appears to have a direct role in chloride binding.  相似文献   

13.
The kinetic mechanism of plastocyanin oxidation by photosystem I in the cyanobacterium Synechocystis sp. PCC 6803 is drastically changed by modifying the metalloprotein by site-directed mutagenesis. The mutations herein considered concern four specific residues, two in the east face and the other two in the hydrophobic patch of plastocyanin. The first set of mutants include D44A, D44K, D47A, and D47R, as well as the double mutants D44A/D47A and D44R/D47R; the second set consists of L12A and K33E. The kinetic efficiency of all these mutant plastocyanins has been analyzed by laser-flash absorption spectroscopy. The plastocyanin concentration dependence of the observed electron transfer rate constant (kobs) is linear with most mutant plastocyanins, as with wild-type plastocyanin, but exhibits a saturation plateau at high protein concentration with the double mutant D44R/D47R, which suggests the formation of a plastocyanin-PSI transient complex. The effect of ionic strength on kobs varies from the wild-type plastocyanin to some of the mutants, for instance D44K, for which the salt concentration dependence of kobs is just the reverse as compared to the wild-type protein. The ionic strength dependence of kobs with D44R/D47R exhibits a bell-shaped profile, which is similar to that of green algae and higher plants. These findings indicate that the double mutant D44R/D47R follows a reaction mechanism involving not only complex formation with PSI but also further reorientation to properly accommodate the redox centers prior to electron transfer, as is the case in most evolved species, whereas the wild-type copper protein reacts with PSI by following a simple collisional kinetic model.  相似文献   

14.
PsbI is a small, integral membrane protein component of photosystem II (PSII), a pigment-protein complex in cyanobacteria, algae and higher plants. To understand the function of this protein, we have isolated the psbI gene from the unicellular cyanobacterium Synechocystis sp. PCC 6803 and determined its nucleotide sequence. Using an antibiotic-resistance cartridge to disrupt and replace the psbI gene, we have created mutants of Synechocystis 6803 that lack the PsbI protein. Analysis of these mutants revealed that absence of the PsbI protein results in a 25-30% loss of PSII activity. However, other PSII polypeptides are present in near wild-type amounts, indicating that no significant destabilization of the PSII complex has occurred. These results contrast with recently reported data indicating that PsbI-deficient mutants of the eukaryotic alga Chlamydomonas reinhardtii are highly light-sensitive and have a significantly lower (80-90%) titer of the PSII complex. In Synechocystis 6803, PsbI-deficient cells appear to be slightly more photosensitive than wild-type cells, suggesting that this protein, while not essential for PSII biogenesis or function, plays a role in the optimization of PSII activity.  相似文献   

15.
A split intein capable of protein trans-splicing is identified in a DnaE protein of the cyanobacterium Synechocystis sp. strain PCC6803. The N- and C-terminal halves of DnaE (catalytic subunit alpha of DNA polymerase III) are encoded by two separate genes, dnaE-n and dnaE-c, respectively. These two genes are located 745,226 bp apart in the genome and on opposite DNA strands. The dnaE-n product consists of a N-extein sequence followed by a 123-aa intein sequence, whereas the dnaE-c product consists of a 36-aa intein sequence followed by a C-extein sequence. The N- and C-extein sequences together reconstitute a complete DnaE sequence that is interrupted by the intein sequences inside the beta- and tau-binding domains. The two intein sequences together reconstitute a split mini-intein that not only has intein-like sequence features but also exhibited protein trans-splicing activity when tested in Escherichia coli cells.  相似文献   

16.
17.
Part of the chlL gene encoding a component involved in light-independent protochlorophyllide reduction was deleted in wild type and in a photosystem I-less strain of Synechocystis sp. PCC 6803. In resulting mutants, chlorophyll biosynthesis was fully light-dependent. When these mutants were propagated under light-activated heterotrophic growth conditions (in darkness except for 15 min of weak light a day) for several weeks, essentially no chlorophyll was detectable but protochlorophyllide accumulated. Upon return of the chlL- mutant cultures to continuous light, within the first 6 h chlorophyll was synthesized at the expense of protochlorophyllide at a rate independent of the presence of photosystem I. Chlorophyll biosynthesized during this time gave rise to a 685 nm fluorescence emission peak at 77 K in intact cells. This peak most likely originates from a component different from those known to be directly associated with photosystems II and I. Development of 695 and 725 nm peaks (indicative of intact photosystem II and photosystem I, respectively) required longer exposures to light. After 6 h of greening, the rate of chlorophyll synthesis slowed as protochlorophyllide was depleted. In the chlL- strain, greening occurred at the same rate at two different light intensities (5 and 50 microE m-2 s-1), indicating that also at low light intensity the amount of light is not rate-limiting for protochlorophyllide reduction. Thus, in this system the rate of chlorophyll biosynthesis is limited neither by biosynthesis of photosystems nor by the light-dependent protochlorophyllide reduction. We suggest the presence of a chlorophyll-binding 'chelator' protein (with 77 K fluorescence emission at 685 nm) that binds newly synthesized chlorophyll and that provides chlorophyll for newly synthesized photosynthetic reaction centers and antennae.  相似文献   

18.
Oligonucleotide probes specific for 16S rRNA and capable of differentiating Streptococcus uberis and S. parauberis from each other and other esculin-hydrolyzing streptococci were developed. Use of a mini-RNA extraction technique for gram-positive cocci associated with bovine mastitis has allowed the probes to be used for identification of esculin-hydrolyzing streptococci from two dairy herds at the Institute for Animal Health, Compton, United Kingdom. One hundred seventy-nine of 206 isolates were identified as S. uberis, 3 were identified as S. parauberis, and 24 were not identified. Isolates not identified by the probes were tested biochemically and found to be mainly Enterococcus faecium, E. faecalis, or S. bovis.  相似文献   

19.
We have isolated, based on the knowledge of the complete genomic sequence of the cyanobacterium Synechocystis sp. PCC 6803, an open reading frame (slr0088) similar to known bacterial carotene desaturases and have analyzed the function of the encoded protein. Surprisingly, this protein has no detectable desaturase activity with phytoene, hydroxyneurosporene, or zeta-carotene as substrates, but is rather a beta-carotene ketolase that acts asymmetrically introducing a keto group on only one of the two beta-ionone rings of beta-carotene to generate echinenone. This is in contrast to the so far characterized beta-carotene ketolases that act symmetrically, producing the di-keto carotenoid canthaxanthin from beta-carotene without significant accumulation of echinenone. We have designated this new gene crtO. The function of the crtO gene product has been demonstrated by 1) the biosynthesis of echinenone when the crtO gene is expressed in an Escherichia coli strain able to accumulate beta-carotene, 2) the in vitro biosynthesis of echinenone from beta-carotene with cell free extracts from E. coli cells that express the crtO gene, and 3) the absence of echinenone in a Synechocystis strain in which the crtO gene has been insertionally inactivated. The primary structure of the Synechocystis asymmetric ketolase bears no similarity with the known beta-carotene ketolases. crtO is not required for normal growth under standard or high light conditions, neither is the photosynthetic activity of the crtO-deficient strain affected.  相似文献   

20.
By use of restriction endonucleases, the DNA of the cyanobacterium Synechocystis sp. strain PCC 6803 was analyzed for DNA-specific methylation. Three different recognition sites of methyltransferases, a dam-like site including N6-methyladenosine and two other sites with methylcytosine, were identified, whereas no activities of restriction endonucleases could be detected in this strain. slr0214, a Synechocystis gene encoding a putative methyltransferase that shows significant similarities to C5-methylcytosine-synthesizing enzymes, was amplified by PCR and cloned for further characterization. Mutations in slr0214 were generated by the insertion of an aphII gene cassette. Analyses of chromosomal DNAs of such mutants demonstrated that the methylation pattern was changed. The recognition sequence of the methyltransferase was identified as 5'-CGATCG-3', corresponding to the recognition sequence of PvuI. The specific methyltransferase activity was significantly reduced in protein extracts obtained from mutant cells. Mutation of slr0214 also led to changed growth characteristics of the cells compared to wild-type cells. These alterations led to the conclusion that the methyltransferase Slr0214 might play a regulatory role in Synechocystis. The Slr0214 protein was also overexpressed in Escherichia coli, and the purified protein demonstrated methyltransferase activity and specificity for PvuI recognition sequences in vitro. We propose the designation M.Ssp6803I [corrected] (Synechocystis methyltransferase I) for the slr0214-encoded enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号