首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study determined the effects, in the rat, of 8-day treatment with arginine-aspartate on haloperidol-induced catalepsy, decrease of locomotor activity and change of striatal dopamine, homovanillic acid (HVA) and dihydroxy-phenylacetic acid (DOPAC) content. Arginine-aspartate was able to attenuate the haloperidol-induced decrease of locomotor activity and to significantly reduce the catalepsy. Moreover, arginine-aspartate treatment itself increased striatal dopamine content and produced a significant decrease of the HVA/dopamine ratio. Pretreatment with arginine-aspartate was able to partially counteract the haloperidol-induced changes of dopamine metabolism: the haloperidol-induced increases of the DOPAC/dopamine and HVA/dopamine ratios were significantly reduced in arginine-aspartate- pretreated rats. These results suggest that the action of arginine-aspartate on haloperidol-induced neurobehavioral effects is probably mediated by interference with striatal dopaminergic innervation.  相似文献   

2.
Vesicular monoamine transporters are known to transport monoamines from the cytoplasm into secretory vesicles. We have used homologous recombination to generate mutant mice lacking the vesicular monoamine transporter 2 (VMAT2), the predominant form expressed in the brain. Newborn homozygotes die within a few days after birth, manifesting severely impaired monoamine storage and vesicular release. In heterozygous adult mice, extracellular striatal dopamine levels, as well as K+- and amphetamine-evoked dopamine release, are diminished. The observed changes in presynaptic homeostasis are accompanied by a pronounced supersensitivity of the mice to the locomotor effects of the dopamine agonist apomorphine, the psychostimulants cocaine and amphetamine, and ethanol. Importantly, VMAT2 heterozygous mice do not develop further sensitization to repeated cocaine administration. These observations stress the importance of VMAT2 in the maintenance of presynaptic function and suggest that these mice may provide an animal model for delineating the mechanisms of vesicular release, monoamine function, and postsynaptic sensitization associated with drug abuse.  相似文献   

3.
Methamphetamine (METH) is a drug of abuse that causes marked DA depletion in the mammalian dopaminergic systems. These are characterized by marked decreases in presynaptic markers including dopamine (DA) levels and DA transporters. Very little research has been carried out to evaluate possible postsynaptic effects of this drug. In the present study, we assessed the status of METH on striatal DA D1 receptors labeled with [3H]SCH23390 after toxic doses of METH that were shown to cause marked depletion of various markers of presynaptic DA systems in mice [J. Neurochem. 69 (1997) 780]. Our results show that these doses of METH caused 30% decrease in striatal DA D1 receptors. In contrast, p53 knockout mice that show protection against the toxic effects of METH show no significant decreases in DA D1 receptors. These results suggest that toxic doses of METH that cause loss of presynaptic DA markers might also affect postsynaptic elements. We discuss the possibility that these changes might be secondary to toxic effects of METH on intrinsic striatal cell bodies.  相似文献   

4.
The effect of neurotoxin-induced depletion of striatal dopamine transporter (DAT) binding sites on animals' responses to psychostimulants was investigated. Multiple 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or methamphetamine (METH) injections but not a single METH injection to Swiss Webster mice resulted in > 60% depletion of striatal DAT. MPTP-induced depletion of DAT did not affect METH- and cocaine-stimulated locomotor activity compared with the response of control mice. Pre-exposure to either the neurotoxic or the single non-neurotoxic dose of METH resulted in a marked locomotor sensitization in response to METH or cocaine challenge injections. The present results indicate that > 60% loss in striatal DAT binding sites has no effect on animals' responses to psychostimulants, and suggest that neural systems other than striatal DAT may contribute to the induction of locomotor sensitization to METH and cocaine.  相似文献   

5.
The degeneration of the substantia nigra that characterises Parkinson's disease may cause an alteration in sensitivity of striatal dopamine receptors. The development of denervation supersensitivity has been held to be responsible for some of the effects of chronic levodopa therapy. The rotating rodent is an animal model commonly used to study the phenomenon of striatal dopamine receptor supersensitivity, and to investigate drugs which may prove to be beneficial in the treatment of Parkinson's disease. We have investigated as to whether long-term oral administration of levodopa to mice with unilateral destruction of striatal dopaminergic nerve terminals influences dopaminergic receptor denervation supersensitivity as judged by the circling response following systemically administered levodopa. It does not do so and the relevance of these findings to the treatment of Parkinson's disease is discussed.  相似文献   

6.
Quite a substantial number of human disorders have been associated with a primary or a secondary impairment of one or several of the dopaminergic pathways. Among disorders associated with a primary impairment of dopaminergic transmission are Parkinson's disease, striatonigral degeneration, progressive supranuclear palsy, and possibly schizophrenia. Diseases of secondary dopamine dysfunction are chiefly represented by Huntington's disease in which dopaminergic transmission is being interrupted by progressive loss of the striatal neurons bearing the postsynaptic D1- and D2-dopamine receptors. Central dopaminergic systems have anatomical as well as organizational properties that render them unique by comparison to other neurotransmission systems, making them able to play a pivotal role in the modulation of various important brain functions such as locomotor activity, attention, and some cognitive abilities. These properties of dopamine neurons have obviously several implications in the clinical expression of human disorders involving dopamine neuron dysfunction. In addition, they can greatly influence the clinical/behavioral consequences of experimental lesions in animal models of dopamine dysfunctions.  相似文献   

7.
8.
Methamphetamine (METH)- and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurotoxicity is thought to be associated with the formation of free radicals. Since evidence suggests that melatonin may act as a free radical scavenger and antioxidant, the present study was undertaken to investigate the effect of melatonin on METH- and MPTP-induced neurotoxicity. In addition, the effect of melatonin on METH-induced locomotor sensitization was investigated. The administration of METH (5 mg kg(-1) x 3) or MPTP (20 mg kg(-1) x 3) to Swiss Webster mice resulted in 45-57% depletion in the content of striatal dopamine and its metabolites, 3,4-dihydroxyphenylacetic acid and homovanillic acid, and 57-59% depletion in dopamine transporter binding sites. The administration of melatonin (10 mg kg(-1)) before each of the three injections of the neurotoxic agents (on day 1), and thereafter for two additional days, afforded a full protection against METH-induced depletion of dopamine and its metabolites and dopamine transporter binding sites. In addition, melatonin significantly diminished METH-induced hyperthermia. However, the treatment with melatonin had no significant effect on MPTP-induced depletion of the dopaminergic markers tested. In the set of behavioral experiments, we found that the administration of 1 mg kg(-1) METH to Swiss Webster mice for 5 days resulted in marked locomotor sensitization to a subsequent challenge injection of METH, as well as context-dependent sensitization (conditioning). The pretreatment with melatonin (10 mg kg(-1)) prevented neither the sensitized response to METH nor the development of conditioned locomotion. Results of the present study indicate that melatonin has a differential effect on the dopaminergic neurotoxicity produced by METH and MPTP. Since it is postulated that METH-induced hyperthermia is related to its neurotoxic effect, while regulation of body temperature is unrelated to MPTP-induced neurotoxicity or METH-induced locomotor sensitization, the protective effect of melatonin observed in the present study may be due primarily to diminishing METH-induced hyperthermia.  相似文献   

9.
1. Isoarecolone was approximately 250 times less potent than nicotine as an inhibitor of [3H]-nicotine binding to rat brain membranes. Isoarecolone failed to inhibit the binding of the nicotinic ligand [125I]-alpha-bungarotoxin or of the muscarinic ligand [3H]-QNB. 2. Nicotine (0.01-30 microM) evoked the release of [3H]-dopamine from striatal and frontal cortex synaptosomes, with EC50 values of approximately 0.5 microM in each case. This release was largely mecamylamine-sensitive. 3. Isoarecolone (1-200 microM) evoked predominantly mecamylamine-sensitive dopamine release from both striatal and cortical synaptosomes, with a potency at least 20 times less than that of nicotine. The maximum effect of isoarecolone was less than that of nicotine, particularly in the frontal cortex preparation. 4. In control rats treated chronically with saline, neither nicotine nor isoarecolone had clear effects on locomotor activity at the doses tested. Chronic treatment with nicotine clearly sensitized rats to the locomotor activating effect of isoarecolone was seen at a dose about 40 times larger than that of nicotine. 5. The low potency and efficacy of isoarecolone in facilitating sensitized locomotor activity resembled its lower potency and efficacy, compared with nicotine, in evoking dopamine release in vitro. The agonist profile of the nicotinic receptor population mediating dopamine release may determine the pharmacological characteristics of consequent locomotor behaviour.  相似文献   

10.
To study the relationship between energy impairment and the effects of d-methamphetamine (METH) on dopaminergic neurons, ATP and dopamine levels were measured in the brain of C57BL/6 mice treated with either a single or four injections of METH (10 mg/kg, i.p.) at 2-h intervals. Neither striatal ATP nor dopamine concentrations changed after a single injection of METH, but both were significantly decreased 1.5 h after the multiple-dose regimen. The effects of METH on ATP levels appear to be selective for the striatum, as ATP concentrations were not affected in the cerebellar cortex and hippocampus after either a single or multiple injections of METH. In a second set of experiments, an intraperitoneal injection of 2-deoxyglucose (2-DG; 1 g/kg), an inhibitor of glucose uptake and utilization, was given 30 min before the third and fourth injections of METH. 2-DG significantly potentiated METH-induced striatal ATP loss at 1.5 h and dopamine depletions at 1.5 h and 1 week. These results indicate that a toxic regimen of METH selectively causes striatal energy impairment and raise the possibility that perturbations of energy metabolism play a role in METH-induced dopaminergic neurotoxicity.  相似文献   

11.
The microdialysis technique was used to examine the effect of the neurotoxin domoate, an analog of glutamic acid, on striatal dopamine activity. Our results show that the intracerebral administration of different concentrations of domoate (100 and 500 microM) produced increases in the extracellular levels of dopamine associated to decreases in the extracellular levels of its metabolites dihydroxyphenylacetate and homovanillate from rat striatum. These changes seem to be related according to a time sequence, indicating a possible effect on the metabolism of dopamine. Changes were also observed in locomotor activity (cycling behavior, sniffing around and chewing) in rats during the domoate infusion. The physiological mechanism by which domoate increased dopamine release remains to be worked out.  相似文献   

12.
The functional imaging techniques of positron emission tomography (PET) and single photon emission tomography (SPET) have been used to study regional brain function in Huntington's disease (HD) in vivo. Reduced striatal glucose metabolism and dopamine receptor binding are evident in all symptomatic HD patients and in approximately 50% of asymptomatic adult mutation carriers. These characteristics correlate with clinical measures of disease severity. Reduced cortical glucose metabolism and dopamine receptor binding, together with reduced striatal and cortical opioid receptor binding, have also been demonstrated in symptomatic patients with HD. Repeat PET measures of striatal function have been used to monitor the progression of this disease objectively. In the future, functional imaging will provide a valuable way of assessing the efficacy of both fetal striatal cell implants and putative neuroprotective agents, such as nerve growth factors.  相似文献   

13.
1. We have investigated the effects of a schizophrenomimetic drug phencyclidine (PCP) and N-methyl-D-aspartate (NMDA)-related agents alone or in combination on dopamine metabolism in the medial prefrontal cortex and striatum of the rats by measuring the tissue concentrations of dopamine and its metabolite, 3,4-dihyroxyphenylacetic acid (DOPAC), and the rate of dopamine disappearance (dopamine utilization) after its synthesis inhibition. 2. Systemic injection of PCP and selective, non-competitive, NMDA antagonists caused an increase of both tissue concentrations of DOPAC and dopamine utilization in the prefrontal cortex but not in the striatum. The PCP-induced augmentation of cortical dopamine metabolism was not influenced by selective lesion of ascending noradrenergic neurones. 3. Intra-prefrontal cortical infusion of PCP or selective competitive or non-competitive antagonists of the NMDA receptor mimicked the ability of systemic PCP injection to enhance DOPAC levels and dopamine utilization in the prefrontal cortex. However, an NMDA antagonist injected into the cell body area of the mesocortical dopaminergic neurones failed to affect dopamine metabolism in the prefrontal cortex. 4. The increasing effects of PCP and selective NMDA antagonists on cortical dopamine utilization were not additive, although a dopamine receptor antagonist, haloperidol, still accelerated the disappearance of dopamine, even in the presence of PCP. 5. Intra-cortical or intra-ventricular infusion of NMDA or D-alanine but not L-alanine, attenuated the ability of systemic PCP administration to facilitate prefrontal dopamine utilization. 6. These data suggest that PCP might activate prefrontal cortical dopaminergic neurones, at least in part, by blocking the NMDA receptor in the prefrontal cortex which participates in a tonic inhibitory control of the mesoprefrontal dopaminergic projections.  相似文献   

14.
Wearing-off phenomenon that complicates levodopa therapy of Parkinson's disease has been attributed to a reduction in striatal dopamine storage due to the progressive degeneration of presynaptic dopaminergic terminals. To determine whether postsynaptic mechanisms also contribute to these response fluctuations, the duration of the antiparkinsonian response in parkinsonian patients grouped by disease severity was compared following discontinuation of a steady-state optimal-dose infusion of apomorphine. Although the plasma half-life of this dopamine receptor agonist remained constant, its mean efficacy half-time declined from 66 minutes in early, levodopa-naive patients to 33 minutes in advanced, complicated parkinsonians (p < 0.005). Since the motor effects of apomorphine do not depend on the presence of dopaminergic terminals, changes at the postsynaptic level undoubtedly contribute to the diminished response duration. The only slightly greater attenuation of levodopa's motor effects observed previously under similar conditions suggests these postjunctional alterations, possibly involving relatively plastic striatal dopaminoceptive systems, account for most of the shortening in the duration of levodopa action that underlie wearing-off fluctuations.  相似文献   

15.
Mice lacking expression of tyrosine hydroxylase (TH), the first and rate-limiting enzyme of the catecholamine biosynthetic pathway, in dopaminergic neuronal cell types were generated by a transgenic rescue approach to clarify the role of dopamine signaling during postnatal development. Introduction of the TH transgene directed by the dopamine beta-hydroxylase gene promoter into TH knockout mice restored noradrenaline and adrenaline synthesis, preventing perinatal lethality and cardiac dysfunction in the knockout mice. Lack of TH expression in the cells that normally express the dopaminergic phenotype resulted in a marked reduction of dopamine accumulation in the tissues, which led to multiple behavioral abnormalities at the juvenile stage. These abnormalities were characterized by a reduction in spontaneous locomotor activity, blockade of methamphetamine-induced hyperactivity, cataleptic behavior, and defects in active avoidance learning. In contrast, development of the pituitary gland as well as production and secretion of the pituitary peptide hormones dependent on hypothalamic dopaminergic control were normally maintained, despite defective dopamine synthesis. These results demonstrate that dopamine neurotransmission is essential for controlling spontaneous and voluntary movement and associative learning during postnatal development through the nigrostriatal and mesocorticolimbic pathways.  相似文献   

16.
Vulnerability to develop drug abuse could be related to differential sensitivity to some central effects of such drugs. Several results point to mesoaccumbens dopamine release elicited by psychostimulants as the rate-limiting factor of their reinforcing, hence addictive, effects and to locomotor stimulation as an indirect index of such a response. In this paper, we report parallel differences in sensitivity to amphetamine-induced locomotor stimulation and mesoaccumbens dopamine release in two inbred strains of mice characterized by differential susceptibility to develop drug self-administration. Thus, mice of the C57BL/6 strain responded with a simultaneous increase of locomotor activity and mesoaccumbens dopamine release measured by intracerebral microdialysis to amphetamine challenge. On the contrary, mice of the DBA/2 strain did not present either response. No strain differences in mesoaccumbens dopamine outflow or 3,4-dihydroxyphenylacetic acid concentration were found in basal conditions or following saline challenges. However, mice of the C57BL/6 strain were characterized by higher levels of accumbal homovanillic acid in basal conditions, in line with the results obtained in rats rendered more sensitive to the locomotor effects of psychostimulants by repeated administration. Finally, in both strains amphetamine decreased accumbal levels of the two metabolites. These results suggest that genotype modulates the locomotor effects of amphetamine through sensitivity of the mesoaccumbens system to amphetamine-stimulated dopamine release. Moreover, they provide a basis to test the hypothesis of mesoaccumbens dopamine involvement in individual susceptibility to the addictive effects of drugs by quantitative trait loci analysis in recombinant inbred strains.  相似文献   

17.
Individual differences within strains of rats have been demonstrated for dopamine-mediated behaviours and responses to dopaminergic drugs. Differences in mesolimbic dopamine function may underlie individual differences in some of these behaviours, including sugar consumption and amphetamine hyperlocomotion. The present study addressed two potential mechanisms for these differences in dopamine-mediated behaviours. The possibility of functional differences in dopamine receptor subtypes was tested in LOW and HIGH sugar feeders. LOW and HIGH feeders did not differ in their response to the partial D1 agonist SKF-38393. The highest dose (2.5 mg/kg) of the D2 agonist quinpirole stimulated locomotor activity to a greater degree in a subset of HIGH sugar feeders as compared with LOW feeders. All doses of amphetamine induced a greater locomotor response in HIGH feeders as compared with LOW feeders, and HIGH feeders exhibited higher levels of extracellular dopamine in the nucleus accumbens than LOW feeders following exposure to sugar and treatment with amphetamine. These results support the interpretation that LOW and HIGH feeders exhibit differences in presynaptic nucleus accumbens dopamine function that account for the expression of individual differences in sugar consumption and response to amphetamine treatments. A subset of HIGH feeders may also exhibit greater D2 receptor function.  相似文献   

18.
The effects of apomorphine on the striatal L-[11C]DOPA influx rate was examined in anaesthetized Rhesus monkeys using positron emission tomography (PET). In comparison with baseline conditions, the addition of a continuous infusion of apomorphine produced decreases in the striatal L-[11C]DOPA influx rate in all the monkeys examined. The effect of apomorphine infusion also showed a dose-dependent trend. In individual monkeys, the magnitude of the effect showed a baseline dopaminergic tone-dependency; that is, the effect of apomorphine was most pronounced in monkeys with high baseline influx rates, and in monkeys with lower baseline values apomorphine induced a weaker effect. Studies of radiolabeled tracer and radiolabeled metabolites formed in plasma confirmed that apomorphine infusion did not induce any change in the peripheral elimination or metabolite formation of L-[11C]DOPA. The decreased striatal L-[11C]DOPA influx rate induced by apomorphine was interpreted as an agonist effect on dopamine autoreceptors regulating the dopamine synthesis rate. The observation of a baseline dopaminergic tone-dependent effect is in agreement with earlier results showing this influence on the striatal influx rate as measured with the tracer L-[11C]DOPA. A priori, it can be established that L-[11C]DOPA and PET provide a method not only to study the structural integrity of the presynaptic dopaminergic system but also to study the homeostasis-regulating mechanisms of this neurotransmitter system in vivo. The ability to measure condition-dependent effects in individuals should be of great importance in determining specific pathophysiological mechanisms underlying degenerative and functional disorders affecting the dopaminergic system.  相似文献   

19.
Deprenyl is the only selective monoamine oxidase B (MAO-B) inhibitor that is in clinical use for the treatment of Parkinson's disease. Our previous studies showed that chronic treatment of rats with low (MAO-B selective) doses of deprenyl inhibited dopamine (DA) re-uptake and enhanced DA release in the striatum. These changes could affect DA synthesis rate by activation of negative feedback loops. Chronic deprenyl treatment has also been suggested to cause down-regulation of release-modulating DA receptors. The effects of chronic and acute treatment with deprenyl on ex vivo striatal tyrosine hydroxylase activity were therefore studied, by determination of steady-state tissue level of DOPA following administration of NSD-1015 (100 mg/kg i.p.). In addition, we assessed changes in the in vivo sensitivity of dopaminergic receptors from the reduction in DOPA extracellular level after systemic apomorphine administration (2.5 mg/kg s.c.), following elevation of microdialysate DOPA by systemic or local aromatic amino acid decarboxylase inhibition with NSD-1015. Chronic treatment with deprenyl (0.25 mg/kg s.c. daily for 21 days) caused a significant reduction in tyrosine hydroxylase activity to 60% of control, with no change in the apomorphine-induced reduction of microdialysate DOPA and DOPAC. The reduction in tyrosine hydroxylase activity is compatible with our previous results showing an increase in striatal DA extracellular level following chronic treatment with deprenyl. The increased extracellular striatal DA level could reduce tyrosine hydroxylase activity through activation of a negative feedback loop, by activation of either presynaptic or postsynaptic DA receptors.  相似文献   

20.
OBJECTIVE: Regional presynaptic dopaminergic function and its regulation by dopamine agonists in different stages of PD can be measured by L-[11C]dopa and PET. In the current investigation, we studied the effects of therapeutic apomorphine on L-[11C]dopa uptake in patients with early and advanced PD. BACKGROUND: With disease progression and chronic dopamine agonist treatment, motor response complications supervene in a majority of PD patients. It is assumed that both presynaptic and postsynaptic changes in the dopaminergic system act to modify dopaminergic efficacy. METHODS: Patients with early and advanced stages of PD were included in the study. All patients were investigated twice with PET and L-[11C]dopa drug free and during a subsequent standardized therapeutic apomorphine infusion. RESULTS: Subregional analysis of the striatum showed differences in the effects of apomorphine infusion on the L-[11C]dopa influx rate in the two patient categories. In patients with early and uncomplicated PD, apomorphine infusion decreased the L-[11C]dopa influx rate. This decrease was most pronounced in the dorsal part of the putamen. In advanced PD patients, apomorphine did not affect the striatal L-[11C]dopa influx rate. CONCLUSIONS: We suggest that in mild and stable PD an upregulated presynaptic inhibitory feedback regulation, particularly in the dorsal putamen, acts to maintain congruity within the dopaminergic system in response to antiparkinsonian medication. However, this inhibitory feedback regulation is diminished with the progression of nigrostriatal degeneration and chronic dopamine agonist treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号