首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microbial fuel cells (MFCs) are typically designed as a two-chamber system with the bacteria in the anode chamber separated from the cathode chamber by a polymeric proton exchange membrane (PEM). Most MFCs use aqueous cathodes where water is bubbled with air to provide dissolved oxygen to electrode. To increase energy output and reduce the cost of MFCs, we examined power generation in an air-cathode MFC containing carbon electrodes in the presence and absence of a polymeric proton exchange membrane (PEM). Bacteria present in domestic wastewater were used as the biocatalyst, and glucose and wastewater were tested as substrates. Power density was found to be much greater than typically reported for aqueous-cathode MFCs, reaching a maximum of 262 +/- 10 mW/m2 (6.6 +/- 0.3 mW/L; liquid volume) using glucose. Removing the PEM increased the maximum power density to 494 +/- 21 mW/m2 (12.5 +/- 0.5 mW/L). Coulombic efficiency was 40-55% with the PEM and 9-12% with the PEM removed, indicating substantial oxygen diffusion into the anode chamber in the absence of the PEM. Power output increased with glucose concentration according to saturation-type kinetics, with a half saturation constant of 79 mg/L with the PEM-MFC and 103 mg/L in the MFC without a PEM (1000 omega resistor). Similar results on the effect of the PEM on power density were found using wastewater, where 28 +/- 3 mW/m2 (0.7 +/- 0.1 mW/L) (28% Coulombic efficiency) was produced with the PEM, and 146 +/- 8 mW/m2 (3.7 +/- 0.2 mW/L) (20% Coulombic efficiency) was produced when the PEM was removed. The increase in power output when a PEM was removed was attributed to a higher cathode potential as shown by an increase in the open circuit potential. An analysis based on available anode surface area and maximum bacterial growth rates suggests that mediatorless MFCs may have an upper order-of-magnitude limit in power density of 10(3) mW/m2. A cost-effective approach to achieving power densities in this range will likely require systems that do not contain a polymeric PEM in the MFC and systems based on direct oxygen transfer to a carbon cathode.  相似文献   

2.
A microbial fuel cell (MFC) is a device that converts organic matter to electricity using microorganisms as the biocatalyst. Most MFCs contain two electrodes separated into one or two chambers that are operated as a completely mixed reactor. In this study, a flat plate MFC (FPMFC) was designed to operate as a plug flow reactor (no mixing) using a combined electrode/proton exchange membrane (PEM) system. The reactor consisted of a single channel formed between two nonconductive plates that were separated into two halves by the electrode/PEM assembly. Each electrode was placed on an opposite side of the PEM, with the anode facing the chamber containing the liquid phase and the cathode facing a chamber containing only air. Electricity generation using the FPMFC was examined by continuously feeding a solution containing wastewater, or a specific substrate, into the anode chamber. The system was initially acclimated for 1 month using domestic wastewater orwastewater enriched with a specific substrate such as acetate. Average power density using only domestic wastewater was 72+/-1 mW/m2 at a liquid flow rate of 0.39 mL/min [42% COD (chemical oxygen demand) removal, 1.1 h HRT (hydraulic retention time)]. At a longer HRT = 4.0 h, there was 79% COD removal and an average power density of 43+/-1 mW/m2. Power output was found to be a function of wastewater strength according to a Monod-type relationship, with a half-saturation constant of Ks = 461 or 719 mg COD/L. Power generation was sustained at high rates with several organic substrates (all at approximately 1000 mg COD/L), including glucose (212+/-2 mW/ m2), acetate (286+/-3 mW/m2), butyrate (220+/-1 mW/ m2), dextran (150+/-1 mW/m2), and starch (242+/-3 mW/ m2). These results demonstrate the versatility of power generation in a MFC with a variety of organic substrates and show that power can be generated at a high rate in a continuous flow reactor system.  相似文献   

3.
Simultaneous electricity generation and distillery wastewater (DWW) treatment were accomplished using a thermophilic microbial fuel cell (MFC). The results suggest that thermophilic MFCs, which require less energy for cooling the DWW, can achieve high efficiency for electricity generation and also reduce sulfate along with oxidizing complex organic substrates. The generated current density (2.3 A/m(2)) and power density (up to 1.0 W/m(2)) were higher than previous wastewater-treating MFCs. The significance of the high Coulombic efficiency (CE; up to 89%) indicated that electrical current was the most significant electron sink in thermophilic MFCs. Bacterial diversity based on pyrosequencing of the 16S rRNA gene revealed that known Deferribacteres and Firmicutes members were not dominant in the thermophilic MFC fed with DWW; instead, uncharacterized Bacteroidetes thermophiles were up to 52% of the total reads in the anode biofilm. Despite the complexity of the DWW, one single bacterial sequence (OTU D1) close to an uncultured Bacteriodetes bacterium became predominant, up to almost 40% of total reads. The proliferation of the D1 species was concurrent with high electricity generation and high Coulombic efficiency.  相似文献   

4.
Microbial fuel cells (MFCs) can convert organic compounds directly into electricity by catalytic oxidation, and although MFCs have attracted considerable interest, there is little information on the electricity-generating potential of artificial bacterial biofilms. We have used acetate-fed MFCs inoculated with sediment, with two-chamber bottles and carbon cloth electrodes to deliver a maximum power output of ~175 mW · m(-2) and a stable power output of ~105 mW · m(-2). Power production was by direct transfer of electrons to the anode from bacterial consortia growing on the anode, as confirmed by cyclic voltammetry (CV) and scanning electron microscopy (SEM). Twenty different species (74 strains) of bacteria were isolated from the consortium under anaerobic conditions and cultured in the laboratory, of which 34% were found to be exoelectrogens in single-species studies. Exoelectrogenesis by members of the genera Vibrio , Enterobacter , and Citrobacter and by Bacillus stratosphericus was confirmed, by use of culture-based methods, for the first time. An MFC with a natural bacterial consortium showed higher power densities than those obtained with single strains. In addition, the maximum power output could be further increased to ~200 mW · m(-2) when an artificial consortium consisting of the best 25 exoelectrogenic isolates was used, demonstrating the potential for increased performance and underlying the importance of artificial biofilms for increasing power output.  相似文献   

5.
Electricity generation by Rhodopseudomonas palustris DX-1   总被引:4,自引:0,他引:4  
Bacteria able to generate electricity in microbial fuel cells (MFCs) are of great interest, but there are few strains capable of high power production in these systems. Here we report that the phototrophic purple nonsulfur bacterium Rhodopseudomonas palustris DX-1, isolated from an MFC, produced electricity at higher power densities (2720 +/- 60 mW/m2) than mixed cultures in the same device. While Rhodopseudomonas species are known for their ability to generate hydrogen, they have not previously been shown to generate power in an MFC, and current was generated without the need for light or hydrogen production. Strain DX-1 utilizes a wide variety of substrates (volatile acids, yeast extract, and thiosulfate) for power production in different metabolic modes, making it highly useful for studying power generation in MFCs and generating power from a range of simple and complex sources of organic matter. These results demonstrate that a phototrophic purple nonsulfur bacterium can efficiently generate electricity by direct electron transfer in MFCs, providing another model microorganism for MFC investigations.  相似文献   

6.
Hydrogen can be recovered by fermentation of organic material rich in carbohydrates, but much of the organic matter remains in the form of acetate and butyrate. An alternative to methane production from this organic matter is the direct generation of electricity in a microbial fuel cell (MFC). Electricity generation using a single-chambered MFC was examined using acetate or butyrate. Power generated with acetate (800 mg/L) (506 mW/m2 or 12.7 mW/ L) was up to 66% higher than that fed with butyrate (1000 mg/L) (305 mW/m2 or 7.6 mW/L), demonstrating that acetate is a preferred aqueous substrate for electricity generation in MFCs. Power output as a function of substrate concentration was well described by saturation kinetics, although maximum power densities varied with the circuit load. Maximum power densities and half-saturation constants were Pmax = 661 mW/m2 and Ks = 141 mg/L for acetate (218 ohms) and Pmax = 349 mW/m2 and Ks = 93 mg/L for butyrate (1000 ohms). Similar open circuit potentials were obtained in using acetate (798 mV) or butyrate (795 mV). Current densities measured for stable power outputwere higher for acetate (2.2 A/m2) than those measured in MFCs using butyrate (0.77 A/m2). Cyclic voltammograms suggested that the main mechanism of power production in these batch tests was by direct transfer of electrons to the electrode by bacteria growing on the electrode and not by bacteria-produced mediators. Coulombic efficiencies and overall energy recovery were 10-31 and 3-7% for acetate and 8-15 and 2-5% for butyrate, indicating substantial electron and energy losses to processes other than electricity generation. These results demonstrate that electricity generation is possible from soluble fermentation end products such as acetate and butyrate, but energy recoveries should be increased to improve the overall process performance.  相似文献   

7.
Although microbial fuel cells (MFCs) generate much lower power densities than hydrogen fuel cells, the characteristics of the cathode can also substantially affect electricity generation. Cathodes used for MFCs are often either Pt-coated carbon electrodes immersed in water that use dissolved oxygen as the electron acceptor or they are plain carbon electrodes in a ferricyanide solution. The characteristics and performance of these two cathodes were compared using a two-chambered MFC. Power generation using the Pt-carbon cathode and dissolved oxygen (saturated) reached a maximum of 0.097 mW within 120 h after inoculation (wastewater sludge and 20 mM acetate) when the cathode was equal size to the anode (2.5 x 4.5 cm). Once stable power was generated after replacing the MFC with fresh medium (no sludge), the Coulombic efficiency ranged from 63 to 78%. Power was proportional to the dissolved oxygen concentration in a manner consistent with Monod-type kinetics, with a half saturation constant of K(DO) = 1.74 mg of O2/L. Power increased by 24% when the cathode surface areas were increased from 22.5 to 67.5 cm2 and decreased by 56% when the cathode surface area was reduced to 5.8 cm2. Power was also substantially reduced (by 78% to 0.02 mW) if Pt was not used on the cathode. By using ferricyanide instead of dissolved oxygen, the maximum power increased by 50-80% versus that obtained with dissolved oxygen. This result was primarily due to increased mass transfer efficiencies and the larger cathode potential (332 mV) of ferricyanide than that obtained with dissolved oxygen (268 mV). A cathode potential of 804 mV (NHE basis) is theoretically possible using dissolved oxygen, indicating that further improvements in cathode performance with oxygen as the electron acceptor are possible that could lead to increased power densities in this type of MFC.  相似文献   

8.
Microbial fuel cells for sulfide removal   总被引:3,自引:0,他引:3  
Thus far, microbial fuel cells (MFCs) have been used to convert carbon-based substrates to electricity. However, sulfur compounds are ubiquitously present in organic waste and wastewater. In this study, a MFC with a hexacyanoferrate cathodic electrolyte was used to convert dissolved sulfide to elemental sulfur. Two types of MFCs were used, a square type closed to the air and a tubular type in which the cathode compartment was open to the air. The square-type MFCs demonstrated a potential-dependent conversion of sulfide to sulfur. In the tubular system, up to 514 mg sulfide L(-1) net anodic compartment (NAC) day(-1) (241 mg L(-1) day(-1) total anodic compartment, TAC) was removed. The sulfide oxidation in the anodic compartment resulted in electricity generation with power outputs up to 101 mW L(-1) NAC (47 W m(-3) TAC). Microbial fuel cells were coupled to an anaerobic upflow anaerobic sludge blanket reactor, providing total removals of up to 98% and 46% of the sulfide and acetate, respectively. The MFCs were capable of simultaneously removing sulfate via sulfide. This demonstrates that digester effluents can be polished by a MFC for both residual carbon and sulfur compounds. The recovery of electrons from sulfides implies a recovery of energy otherwise lost in the methane digester.  相似文献   

9.
A sediment microbial fuel cell (MFC) produces electricity through the bacterial oxidation of organic matter contained in the sediment. The power density is limited, however, due in part to the low organic matter content of most marine sediments. To increase power generation from these devices, particulate substrates were added to the anode compartment. Three materials were tested: two commercially available chitin products differing in particle size and biodegradability (Chitin 20 and Chitin 80) and cellulose powder. Maximum power densities using chitin in this substrate-enhanced sediment MFC (SEM) were 76 +/- 25 and 84 +/- 10 mW/m2 (normalized to cathode projected surface area) for Chitin 20 and Chitin 80, respectively, versus less than 2 mW/m2 for an unamended control. Power generation over a 10 day period averaged 64 +/- 27 mW/ m2 (Chitin 20) and 76 +/- 15 mW/m2 (Chitin 80). With cellulose, a similar maximum power was initially generated (83 +/- 3 mW/m2), but power rapidly decreased after only 20 h. Maximum power densities over the next 5 days varied substantially among replicate cellulose-fed reactors, ranging from 29 +/- 12 to 62 +/- 23 mW/m2. These results suggest a new approach to power generation in remote areas based on the use of particulate substrates. While the longevity of the SEM was relatively short in these studies, it is possible to increase operation times by controlling particle size, mass, and type of material needed to achieve desired power levels that could theoretically be sustained over periods of years or even decades.  相似文献   

10.
Hydroxylated and aminated polyaniline nanowire networks were synthesized and used as anode materials to enhance the electrical outputs of microbial fuel cells (MFCs). MFCs with these anodes generated power and current densities as high as 0.28mW cm(-2) (per geometric anode area) and 2.9mA cm(-2), respectively.  相似文献   

11.
The bacterial community designated BC1, which originates from night soil treatment sludge, exhibited a strong ability to produce H2 from raw starch in the light in the presence of 3% NaC1. Three halophilic or halotolerant bacterial species, Vibrio fluvialis, Rhodobium marinum, and Proteus vulgaris, were isolated from BC1 and identified. The level of H2 production from starch by coculture of V. fluvialis and R. marinum was nearly equal to that by BC1, indicating that these two strains play roles in starch degradation and H2 production from the degraded products in BC1, respectively. Acetic acid and ethanol, which were detected as the major products of degradation of starch by V. fluvialis in pure culture, seemed to be mainly utilized for H2 production by R. marinum in BC1 and the coculture. However, R. marinum in pure culture could not produce H2 from a synthetic medium containing acetic acid and ethanol, suggesting that V. fluvialis supplied not only substrates but also some unknown factors capable of inducing H2 production from these substrates by R. marinum. A study using the starch-rich microalgae, Chlamydomonas reinhardtii and Dunaliella tertiolecta, demonstrated that the above coculture could be applied to the production of H2 at high yield from raw starch in an algal biomass.  相似文献   

12.
The maximum power generated in a single-chamber air-cathode microbial fuel cell (MFC) has previously been shown to increase when the spacing between the electrodes is decreased from 4 to 2 cm. However, the maximum power from a MFC with glucose (500 mg/L) decreased from 811 mW/ m2 (R(ex) = 200 omega, Coulombic efficiency of CE = 28%) to 423 mW/m2 (R(ex) = 500 omega, CE = 18%) when the electrode spacing was decreased from 2 to 1 cm (batch mode operation, power normalized by cathode projected area). This decrease in power was unexpected as the internal resistance decreased from 35 omega (2-cm spacing) to 16 omega (1-cm spacing). However, providing advective flow through the porous anode toward the cathode substantially increased power, resulting in the highest maximum power densities yet achieved in an air-cathode system using glucose or domestic wastewater as substrates. For glucose, with a 1-cm electrode spacing and flow through the anode with continuous flow operation of the MFC, the maximum power increased to 1540 mW/m2 (51 W/m3) and the CE increased to 60%. Using domestic wastewater (255 +/- 10 mg of COD/L), the maximum power density was 464 mW/m2 (15.5 W/m3; CE = 27%). Although flow through the anode could lead to plugging, especially for particulate substrates such as domestic wastewater, the system was operated using glucose for over 42 days without clogging. These results show that power output in this air-cathode single-chamber MFC can be increased by reducing the electrode spacing if the reactors are operated in continuous flow mode with advective flow through the anode toward the cathode.  相似文献   

13.
A miniature microbial fuel cell (mini-MFC) is described that demonstrates high output power per device cross-section (2.0 cm2) and volume (1.2 cm3). Shewanella oneidensis DSP10 in growth medium with lactate and buffered ferricyanide solutions were used as the anolyte and catholyte, respectively. Maximum power densities of 24 and 10 mW/m2 were measured using the true surface areas of reticulated vitreous carbon (RVC) and graphite felt (GF) electrodes without the addition of exogenous mediators in the anolyte. Current densities at maximum power were measured as 44 and 20 mA/m2 for RVC and GF, while short circuit current densities reached 32 mA/m2 for GF anodes and 100 mA/m2 for RVC. When the power density for GF was calculated using the cross sectional area of the device or the volume of the anode chamber, we found values (3 W/m2, 500 W/m3) similar to the maxima reported in the literature. The addition of electron mediators resulted in current and power increases of 30-100%. These power densities were surprisingly high considering a pure S. oneidensis culture was used. We found that the short diffusion lengths and high surface-area-to-chamber volume ratio utilized in the mini-MFC enhanced power density when compared to output from similar macroscopic MFCs.  相似文献   

14.
Microbial fuel cells (MFCs) offer the potential for generating electricity, mitigating greenhouse gas emissions, and bioremediating pollutants through utilization of a plentiful renewable resource: soil organic carbon. We analyzed bacterial community structure, MFC performance, and soil characteristics in different microhabitats within MFCs constructed from agricultural or forest soils in order to determine how soil type and bacterial dynamics influence MFC performance. Our results indicated that MFCs constructed from agricultural soil had power output about 17 times that of forest soil-based MFCs and respiration rates about 10 times higher than forest soil MFCs. Agricultural soil MFCs had lower C:N ratios, polyphenol content, and acetate concentrations than forest soil MFCs. Bacterial community profile data indicate that the bacterial communities at the anode of the high power MFCs were less diverse than in low power MFCs and were dominated by Deltaproteobacteria, Geobacter, and to a lesser extent, Clostridia, while low-power MFC anode communities were dominated by Clostridia. These results suggest that the presence of organic carbon substrate (acetate) was not the major limiting factor in selecting for highly electrogenic bacterial communities, while the quality of available organic matter may have played a significant role in supporting high performing bacterial communities.  相似文献   

15.
Microbial fuel cells (MFCs) have been used to produce electricity from different compounds, including acetate, lactate, and glucose. We demonstrate here that it is also possible to produce electricity in a MFC from domestic wastewater, while atthe same time accomplishing biological wastewater treatment (removal of chemical oxygen demand; COD). Tests were conducted using a single chamber microbial fuel cell (SCMFC) containing eight graphite electrodes (anodes) and a single air cathode. The system was operated under continuous flow conditions with primary clarifier effluent obtained from a local wastewater treatment plant. The prototype SCMFC reactor generated electrical power (maximum of 26 mW m(-2)) while removing up to 80% of the COD of the wastewater. Power output was proportional to the hydraulic retention time over a range of 3-33 h and to the influent wastewater strength over a range of 50-220 mg/L of COD. Current generation was controlled primarily by the efficiency of the cathode. Optimal cathode performance was obtained by allowing passive air flow rather than forced air flow (4.5-5.5 L/min). The Coulombic efficiency of the system, based on COD removal and current generation, was < 12% indicating a substantial fraction of the organic matter was lost without current generation. Bioreactors based on power generation in MFCs may represent a completely new approach to wastewater treatment. If power generation in these systems can be increased, MFC technology may provide a new method to offset wastewater treatment plant operating costs, making advanced wastewater treatment more affordable for both developing and industrialized nations.  相似文献   

16.
To efficiently generate electricity using bacteria in microbial fuel cells (MFCs), highly conductive noncorrosive materials are needed that have a high specific surface area (surface area per volume) and an open structure to avoid biofouling. Graphite brush anodes, consisting of graphite fibers wound around a conductive, but noncorrosive metal core, were examined for power production in cube (C-MFC) and bottle (B-MFC) air-cathode MFCs. Power production in C-MFCs containing brush electrodes at 9600 m2/m3 reactor volume reached a maximum power density of 2400 mW/m2 (normalized to the cathode projected surface area), or 73 W/m3 based on liquid volume, with a maximum Coulombic efficiency (CE) of 60%. This power density, normalized by cathode projected area, is the highest value yet achieved by an air-cathode system. The increased power resulted from a reduction in internal resistance from 31 to 8 Q. Brush electrodes (4200 m2/m3) were also tested in B-MFCs, consisting of a laboratory media bottle modified to have a single side arm with a cathode clamped to its end. B-MFCs inoculated with wastewater produced up to 1430 mW/m2 (2.3 W/m3, CE = 23%) with brush electrodes, versus 600 mW/m2 with a plain carbon paper electrode. These findings show that brush anodes that have high surface areas and a porous structure can produce high power densities, and therefore have qualities that make them ideal for scaling up MFC systems.  相似文献   

17.
Lignocellulose was converted into reducing sugars by using saccharification enzymes from cocultivated Trichoderma reesei and Aspergillus niger and reducing sugars as nutrients for Zymomonas mobilis to produce bioethanol in an immobilization system. After 96 h of cultivation, cocultivated T. reesei and A. niger had enzymatical synergistic effects that enabled a reducing sugar production of 1.29 g/L and a cellulose conversion rate of 23.27%. An 18% total inoculum concentration and a 1/1 inoculation ratio of T. reesei to A. niger obtained a reducing sugar production rate and a cellulose conversion rate of 2.57 g/L and 46.27%, respectively. The co-immobilization cultivation results showed that using polyurethane as a carrier optimized total saccharification enzyme activity at an inoculum ratio of 1/1 and a total inoculum concentration of 6.5×10(6)spores/mL. Based on the experimental results, the bioreactor design was further modified to enhance bioethanol production. The three strains (A. niger, T. reesei and Z. mobilis) were cocultivated with a co-immobilization cultivation system. The experimental results showed that, after 24 h cultivation, bioethanol production reached 0.56 g/L, and reducing sugar conversion rate reached 11.2% when using carboxymethylcellulose (CMC) substrates. The experimental results confirmed that the modified bioreactor enhances bioethanol production. However, further experiments are needed to determine how to prevent multi-stage failure of reducing medium volume.  相似文献   

18.
The variable biocatalyst density in a microbial fuel cell (MFC) anode biofilm is a unique feature of MFCs relative to other electrochemical systems, yet performance characterizations of MFCs typically involve analyses at electrochemically relevant time scales that are insufficient to account for these variable biocatalyst effects. This study investigated the electrochemical performance and the development of anode biofilm architecture under different external loadings, with duplicate acetate-fed single-chamber MFCs stabilized at each resistance for microbially relevant time scales. Power density curves from these steady-state reactors generally showed comparable profiles despite the fact that anode biofilm architectures and communities varied considerably, showing that steady-state biofilm differences had little influence on electrochemical performance until the steady-state external loading was much larger than the reactor internal resistance. Filamentous bacteria were dominant on the anodes under high external resistances (1000 and 5000 Ω), while more diverse rod-shaped cells formed dense biofilms under lower resistances (10, 50, and 265 Ω). Anode charge transfer resistance decreased with decreasing fixed external resistances, but was consistently 2 orders of magnitude higher than the resistance at the cathode. Cell counting showed an inverse exponential correlation between cell numbers and external resistances. This direct link of MFC anode biofilm evolution with external resistance and electricity production offers several operational strategies for system optimization.  相似文献   

19.
A thermophilic mediatorless microbial fuel cell (ML-MFC) was developed for continuous electricity production while treating artificial wastewater concurrently. A maximum power density of 1030 +/- 340 mW/m2 was generated continuously at 55 degrees C with an anode retention time of 27 min (11 mL h(-1)) and continuous pumping of air-saturated phosphate buffer into the cathode compartment at the retention time of 0.7 min (450 mL h(-1)). Meanwhile, about 80% of the electrons available from acetate oxidation were recovered as current. Denaturing gradient gel electrophoresis (DGGE) and direct 16S-rRNA gene analysis revealed that the bacterial diversity in this ML-MFC system was lower than the inoculum. Direct 16S rDNA analysis showed that the dominant bacteria representing 57.8% of total population in anode compartment was phylogenetically very closely related to an uncultured clone, clone E4. Two sheets of graphite used as the anode showed different dominant bacterial population. For the first time, it is shown that thermophilic electrochemically active bacteria can be enriched to concurrently generate electricity and treat artificial wastewater in a thermophilic ML-MFC.  相似文献   

20.
Cathode catalysts and binders were examined for their effect on power densities in single chamber, air-cathode, microbial fuel cells (MFCs). Chronopotentiometry tests indicated thatthe cathode potential was only slightly reduced (20-40 mV) when Pt loadings were decreased from 2 to 0.1 mg cm(-2), and that Nafion performed better as a Pt binder than poly(tetrafluoroethylene) (PTFE). Replacing the precious-metal Pt catalyst (0.5 mg cm(-2); Nafion binder) with a cobalt material (cobalt tetramethylphenylporphyrin, CoTMPP) produced slightly improved cathode performance above 0.6 mA cm(-2), but reduced performance (<40 mV) at lower current densities. MFC fed batch tests conducted for 35 cycles (31 days) using glucose showed that replacement of the Nafion binder used for the cathode catalyst (0.5 mg of Pt cm(-2)) with PTFE reduced the maximum power densities (from 400 +/- 10 to 480 +/- 20 mW m(-2) to 331 +/- 3 to 360 +/- 10 mW m(-2)). When the Pt loading on cathode was reduced to 0.1 mg cm(-2), the maximum power density of MFC was reduced on average by 19% (379 +/- 5 to 301 +/- 15 mW m(-2); Nafion binder). Power densities with CoTMPP were only 12% (369 +/- 8 mW m(-2)) lower over 25 cycles than those obtained with Pt (0.5 mg cm(-2); Nafion binder). Power densities obtained using with catalysts on the cathodes were approximately 4 times more than those obtained using a plain carbon electrode. These results demonstrate that cathodes used in MFCs can contain very little Pt, and that the Pt can even be replaced with a non-precious metal catalyst such as a CoTMPP with only slightly reduced performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号