首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In a previous study, two triblock copolymers of styrene/ethylene-butylene/styrene (SEBS), of different molecular weights, were used to compatibilize a blend of 80 vol% polystyrene (PS) and 20% ethylene-propylene rubber (EPR). The emulsification curve, which relates the average minor phase particle diameter to the concentration of interfacial agent added, was used to quantify the effect of the interfacial agents on the blend morphology. Links between morphology, interface, and properties were established by combining the emulsification curve with a fracture mechanics approach. The aim of this work is to foster the understanding of the effects of these two triblock copolymers on the fracture behavior of the blend over various loading rates and temperatures. The focus is on the brittle-ductile transition in fracture behavior, which is a critical condition for the application of these materials. It has been found that adding an interfacial agent lowers the temperature at brittle-ductile transition. However, this effect is much more pronounced for the copolymer with a lower molecular weight. The time-temperature dependence of fracture performance of the blend is also affected by the interface and morphology. When loading rate increases, the shift of the temperature at brittle-ductile transition is less significant for the blend with an interfacial agent having a lower molecular weight. The effect of loading rate and temperature on the brittle-ductile transition in fracture performance of the blends is controlled by an energy activation process. Adding the interfacial agents results in a plasticizing effect of the polystyrene matrix and a reduction in the energy barrier controlling the fracture process. With the addition of interfacial agent, the yield stress slightly increases at low concentration, attains a maximum value, and then decreases. The increase in yield stress confirms the coupling role of the copolymer and is in agreement with the observed emulsification curves. The reduction of yield stress and increase in ultimate strain with the copolymer concentration demonstrate the plasticizing effect of the interfacial agent. The result of stress relaxation tests also confirms the above effects of the interfacial agent.  相似文献   

2.
The ductile–brittle transition temperatures were determined for compatibilized nylon 6/acrylonitrile‐butadiene‐styrene (PA6/ABS) copolymer blends. The compatibilizers used for those blends were methyl methacrylate‐co‐maleic anhydride (MMA‐MAH) and MMA‐co‐glycidyl methacrylate (MMA‐GMA). The ductile–brittle transition temperatures were found to be lower for blends compatibilized through maleate modified acrylic polymers. At room temperature, the PA6/ABS binary blend was essentially brittle whereas the ternary blends with MMA‐MAH compatibilizer were supertough and showed a ductile–brittle transition temperature at ?10°C. The blends compatibilized with maleated copolymer exhibited impact strengths of up to 800 J/m. However, the blends compatibilized with MMA‐GMA showed poor toughness at room temperature and failed in a brittle manner at subambient temperatures. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2643–2647, 2003  相似文献   

3.
The mechanical fracture and ductile-brittle transition (DBT) behavior, hysteresis phenomenon and the plastic zone size of polypropylene (PP) / ethylene-propylene-diene terpolymer (PP/EPDM) blends were investigated by varying EPDM content and notch radius under different temperatures. An increase in test temperature or rubber content in the PP/EPDM blend results in lower yield stress and Young's modulus. The ductile-brittle transition temperature (DBTT) of the notched impact strength decreases with the increase of the EPDM content. However, the DBTT is fairly independent of the notch radius. SEM morphologies of the fracture surfaces indicate that two separate modes, localized and mass shear yielding, work simultaneously in these blends. The plane-strain localized shear yielding dominates the brittle failure at lower temperatures, whereas the plane stress mass shear yielding dominates the ductile fracture at higher temperatures. The presence of EPDM rubber decreases the yield stress of the PP/EPDM blend due to the overlapping stress fields of adjacent particles, resulting in higher hysteresis energy. The relationships among the test temperature, hysteresis loss energy and the size of plastic zone are discussed in detail.  相似文献   

4.
The effect of fiber content on the fracture toughness of short glass fiber reinforced and rubber toughened nylon‐6 has been investigated using the essential work of fracture (EWF) analysis under both quasi‐static and impact rates of loading. Under quasi‐static loading rate, matrix plastic deformation played a major role. Addition of 10 wt% of short glass fibers into a rubber toughened nylon‐6 matrix improved the fracture toughness substantially. This is due to the synergistic effect that comes from matrix yielding and fiber related energy absorption such as fiber debonding, fiber pull‐out and fiber fracture. With further increasing the glass fiber content, up to 20 and 30 wt%, even though plastic deformation could still take place on the fracture surfaces, the depth of the fracture process zones was much smaller when compared with the system with 10 wt% of glass fibers. The reduction in fracture process zone caused the reduction in fracture toughness. Under impact loading rate, the unreinforced blend still fractured in a ductile manner with gross yielding in the inner fracture process zone and the outer plastic zone. The unrein‐forced blend therefore possesseed higher fracture toughness. For the fiber reinforced blends, the matrix fractured in brittle manner and so fracture toughness of the reinforced blends decreased dramatically. The impact fracture toughness increased slightly after incorporation of a higher weight percentage of glass fibers.  相似文献   

5.
To overcome serious rigidity depression of rubber‐toughened plastics and fabricate a rigidity‐toughness balanced thermoplastic, a combination of styrene‐[ethylene‐(ethylene‐propylene)]‐styrene block copolymer (SEEPS) and ethylene‐propylene rubber (EPR) was used to toughen polypropylene. The dynamic mechanical properties, crystallization and melting behavior, and mechanical properties of polypropylene (PP)/EPR/SEEPS blends were studied in detail. The results show that the combination of SEEPS and EPR can achieve the tremendous improvement of low‐temperature toughness without significant strength and rigidity loss. Dynamic mechanical properties and phase morphology results demonstrate that there is a good interfacial strength and increased loss of compound rubber phase comprised of EPR component and EP domain of SEEPS. Compared with PP/EPR binary blends, although neither glass transition temperature (Tg) of the rubber phase nor Tg of PP matrix in PP/EPR/SEEPS blends decreases, the brittle‐tough transition temperature (Tbd) of PP/EPR/SEEPS blends decreases, indicating that the increased interfacial interaction between PP matrix and compound rubber phase is also an effective approach to decrease Tbd of the blends so as to improve low‐temperature toughness. The balance between rigidity and toughness of PP/EPR/SEEPS blends is ascribed to the synergistic effect of EPR and SEEPS on toughening PP. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45714.  相似文献   

6.
Binary and ternary blends of PC, ABS, and PMMA were studied. The blends were produced from original and recycled materials by melt mixing in a wide range of compositions. Instrumented Charpy impact testing, tensile testing, rheology investigations, and electron microscopy were carried out to determine the relationship between the deformation and fracture behavior, blend composition, morphology, and processing parameters. Resistance against unstable crack propagation was evaluated using the concepts of J‐integral and crack‐tip‐opening displacement (CTOD). The transition from ductile elastic‐plastic to brittle‐linear elastic fracture behavior was observed in the case of PC/ABS/PMMA blend at 10% of PMMA. Reprocessing had only a slight influence on the deformation and fracture behavior of the recycled blends. The blends produced from recycled materials proved to be competitive with the original pure materials. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

7.
The essential work of fracture (EWF) method has aroused great interest and has been used to characterize the fracture toughness for a range of ductile metals, polymers and composites. In the plastics industry, for purposes of practical design and ranking of candidate materials, it is important to evaluate the impact essential work of fracture at high‐rate testing of polymers and polymer blends. In this paper, the EWF method has been utilized to determine the high‐rate specific essential fracture work, we, for elastomer‐modified PA6/PPE/SMA (50/50/5) blends by notched Charpy tests. It is found that we increases with testing temperature and elastomer content for a given specimen thickness. Morphologically, there are two failure mechanisms: shear yielding and pullout of second phase dispersed particles. Shear yielding is dominant in ductile fracture, whereas particle pullout is predominant in brittle fracture.  相似文献   

8.
The work focused on the elucidation of several key parameters in toughening poly(vinyl chloride) (PVC) by the methyl methacrylate–butadiene–styrene (MBS) core‐shell particles. Accordingly, blends containing various weight percent of the MBS particles were prepared and characterized by dilute solution viscometry, dynamic light scattering, dynamic mechanical thermal analysis, transmission electron microscopy, and temperature variable impact test. The results showed PVC/MBS solution miscibility in almost all compositions with their maximum thermodynamic affinities at about 17 and 67 wt % of MBS in tetrahydrofurane (THF). In addition, MBS weight percent increase in its blend with the PVC above 10 led to severe impact energy raise with eventual leveling at about 17 wt %. Furthermore, blend toughness and its components miscibility in solution increased in parallel up to 20 wt % of MBS particles. On the other hand, blend toughness declined with test temperature decrease toward impact modifier core Tg at about ?30°C even for the sample with 20 wt % of the MBS particles. Finally, the brittle‐ductile transition of the blend containing 20 wt % of the MBS particles comparison with its matrix tan δ‐temperature correlation implied 2500 J/m impact energy equivalence with 90°C sample temperature rise in secondary relaxation activation. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

9.
The intrinsically impact-brittle PC/PET blends can be effectively toughened, in terms of lower ductile brittle transition temperature (DBTT) and reduced notch sensitivity, by incorporating butylacrylate core-shell rubber. The rubber particles are distributed exclusively in the PC phase. Varying the PC melt flow rate (MFR) is more important than varying the PET I.V. to vary the low temperature toughness of the blends. PC with MFR = 3 is essential to produce the toughest PC/PET/rubber blend. The presence of rubber slightly relieves the strain rate sensitivity on yield stress increase. Lower MFR PC in the blend results in smaller activation volume and, therefore, higher strain rate sensitivity, because a greater number of chain segments are involved in the cooperative movement during yielding. Two separate modes, localized and mass shear yielding, work simultaneously in the rubber toughening mechanism. The plane-strain localized shear yielding dominates the toughening mechanism at lower temperatures and brittle failure, while the plane-stress mass shear yielding dominates at higher temperatures and ductile failure. The critical precrack plastic zone volume has been used to interpret the observed phenomenon. © 1994 John Wiley & Sons, Inc.  相似文献   

10.
We report the solid‐state die‐drawing of polypropylene and blends of polypropylene with a polyethylene elastomer to produce highly oriented products with enhanced mechanical properties. The blends showed an improvement in the drawability compared to the polypropylene homopolymer. The tensile modulus of the polypropylene homopolymer and the blends, along the draw direction, increased with draw ratio. In the transverse direction, the modulus of the homopolymer and the blends decreased with draw ratio as a result of anisotropy along the draw direction. The impact fracture behavior of the isotropic and the oriented samples was evaluated from noteched Charpy tests at 1 m/s over a wide range of temperatures. Linear elastic fracture mechanics were used to characterize the brittle fracture and the J‐integral approach was used to characterize the semi‐brittle and ductile fracture. In the isotropic state, the inclusion of the elastomer phase in the polypropylene matrix increased the toughness and also decreased the brittle‐ductile transition temperature. The oriented sheets, drawn at 110°C to a draw ratio of 4, were tested with the initial notch parallel and perpendicular to the draw direction. When tested with the initial notch parallel to the draw direction, the toughness of the homopolymer and the blends decreased when compared with the isotropic material. The brittle‐ductile transition temperature increased as a result of anisotropy. When tested with the initial notch perpendicular to the draw direction, the blends and the homopolymer showed considerable improvement in toughness compared to the isotropic state. Fracture along this direction is complicated, with subsidiary cracks propagating perpendicular to the main crack direction (which is parallel to the draw direction).  相似文献   

11.
This work aimed to study, for the first time, the melt blending of poly(lactic acid) (PLA) and ethylene acrylic acid (EAA) copolymer by a novel vane extruder to toughen PLA. The phase morphologies, mechanical, and rheological properties of the PLA/EAA blends of three weight ratios (90/10, 80/20, and 70/30) were investigated. The results showed that the addition of EAA improves the toughness of PLA at the expense of the tensile strength to a certain degree and leads the transition from brittle fracture of PLA into ductile fracture. The 80/20 (w/w) PLA/EAA blend presents the maximum elongation at break (13.93%) and impact strength (3.18 kJ/m2), which is 2.2 and 1.2 times as large as those of PLA, respectively. The 90/10 and 80/20 PLA/EAA blends exhibit droplet‐matrix morphologies with number average radii of 0.30–0.73 μm, whereas the 70/30 PLA/EAA blend presents an elongated co‐continuous structure with large radius (2.61 μm) of EAA phase and there exists PLA droplets in EAA phase. These three blends with different phase morphologies display different characteristic linear viscoelastic properties in the low frequency region, which were investigated in terms of their complex viscosity, storage modulus, loss tangent, and Cole‐Cole plots. Specially, the 80/20 PLA/EAA blend presents two circular arcs on its Cole‐Cole plot. So, the longest relaxation time of the 80/20 blend was obtained from its complex viscosity imaginary part plot, and the interfacial tension between PLA and EAA, which is 4.4 mN/m, was calculated using the Palierne model. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40146.  相似文献   

12.
The effects of boiling water on the mechanical and thermal properties and morphologies of polycarbonate (PC), PC/acrylonitrile–butadiene–styrene resin (PC/ABS), and PC/low‐density polyester (PC/LDPE) blends (compositions of PC/ABS and PC/LDPE blends were 80/20) were studied. PC and the PC/ABS blend had a transition from ductile to brittle materials after boiling water aging. The PC/LDPE blend was more resistant to boiling water aging than PC and the PC/ABS blend. The thermal properties of glass‐transition temperature (Tg) and melting temperature (Tm) in PC and the blends were measured by DSC. The Tg of PC and PC in the PC/ABS and PC/LDPE blends decreased after aging. The Tg of the ABS component in the PC/ABS blend did not change after aging. The supersaturated water in PC clustered around impurities or air bubbles leading to the formation of microcracks, which was the primary reason for the ductile–brittle transition in PC, and the microcracks could not recover after PC was treated at 160°C for 6 h. The PC/ABS blend showed slightly higher resistance to boiling water than did PC. The highest resistance to boiling water of the PC/LDPE blend may be attributed to its special structural morphology. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 589–595, 2003  相似文献   

13.
This study attempted to correlate morphological changes and physical properties for a high rubber content acrylonitrile–butadiene–styrene (ABS) and its diluted blends with a poly(styrene‐co‐acrylonitrile) (SAN) copolymer. The results showed a close relationship between rubber content and fracture toughness for the blends. The change of morphology in ABS/SAN blends explains in part some deviations in fracture behavior observed in ductile–brittle transition temperature shifts. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2606–2611, 2004  相似文献   

14.
Polymer blends typically are the most economical means to develop new resins for specific applications with the best cost/performance balance. In this paper, the mechanical properties, melting, glass transition, and crystallization behavoir of 80 phr polypropylene (PP) with varying weights of linear low density polyethylene (LLDPE) at 10, 20/ 20 wt % CaCO3, 30, 40, and 50 phr were studied. A variety of physical properties such as tensile strength, impact strength, and flexural strength of these blends were evaluated. The compatibility of these composite was examined by differential scanning calorimetry (DSC) to estimate Tm and Tc, and by dynamic mechanical analysis (DMA) to estimate Tg. The fractographic analysis of these blends was examined by scanning electron microscopy (SEM). It has been confirmed that increasing the LLDPE content trends to decreases the tensile strength and flexural strength. However, increasing the LLDPE content led to increases in the impact strength of PP/LLDPE blends. It was also found that up to 40 phr the corresponding melting point (Tm) was not effected with increasing LLDPE content. Each compound has more than one Tg, which was informed that there is a brittle‐ductile transition in fracture nature of these blends, the amount of material plastically deformed on the failure surface seems to increase with the increasing the LLDPE content. And PP/LLDPE blends at temperature (23°C) showed a ductile fracture mode characterized by the co‐existence of a shear yielding process; whereas at lower temperature (−20°C) the fractured surfaces of specimens appear completely brittle. The specimens broke into two pieces with no evidence of stress whitening, permanent macroscopic deformation or yielding. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
Fracture toughness of polypropylene (PP)/poly(styrene‐ran‐butadiene) rubber (SBR) blends as a function of concentration of maleic anhydride (MA) in the maleated polypropylene (MAPP) compatibilizer was investigated under uniaxial static and impact loading conditions. The addition of MAPP to the unmodified PP/rubber blend enhanced the tensile modulus and yield stress as well as the Charpy impact strength. The maximum values were recorded at 1.0 wt% grafted MA in the compatibilizer. V‐shaped blunt‐notched specimens exhibited typical ductile behavior and no breakage of the specimens occurred during the impact fracture tests. Sharp‐notched specimens of uncompatibilized and low‐content MA blends broke in a semibrittle manner, supported by a rapid crack propagation process. Increasing MA content in the blends led to semibrittle‐to‐ductile transition characterized by stable crack propagation. Fracture mechanics experiments, supplemented by scanning electron microscopy (SEM), were also employed to obtain a better understanding of the fracture and deformation behavior. Copyright © 2005 Society of Chemical Industry  相似文献   

16.
Blends of propylene–ethylene block copolymer (PEB) and propylene homopolymer (PP) were prepared to give various rubber contents (4–20 wt %). By diluting the PEB with PP with molecular weight equal to that of the PEB matrix, molecular characteristics of all the blends were kept constant. The rubber particle size and size distribution of all the blends were almost constant, so that the interparticle distance decreased with increased rubber content. According to the observation of the fracture behavior at ?20°C, a brittle to ductile transition was found at the rubber content of 16 wt %. Microdeformation behavior of the blends was investigated in the region of brittle to ductile transition by using transmission electron microscopy. In the case of the brittle sample with low rubber content, crazing and voiding were observed. Whereas even in the ductile sample with high rubber content, crazing certainly took place before shear yielding. The origin of ductile fracture could possibly be attributed to the relaxation of strain constraint by the microvoids contained in the craze. © 1993 John Wiley & Sons, Inc.  相似文献   

17.
Abstract

The fracture mechanism of hybrid iPP–EPR–GF composites has been studied by notched Charpy, three- and four-point bending fracture tests. The results of impact tests illustrate that increasing both temperature and EPR/GF ratio increases the impact energy of iPP–EPR–GF. Indeed, with increasing temperature, a brittle, ductile, transition temperature (BDTT) occurs. The results of a three-point bending test show that fracture toughness (KIC ) can be improved by addition of both GF and EPR. Since the trend in the fracture toughness values is close to what would be expected by the rule of blends, it can be concluded that the use of both GF and EPR has no significant synergistic effect on toughening. The results of a four-point bending test show that craze-like damage appears in front of the pre-crack and its propagation is dictated by the GF and EPR content. Looking in more detail at the damaged zone by means of cross-polarised light microscopy, evidence of birefringence can be revealed. Briefly, the dominant mechanism of fracture in the iPP–EPR–GF system studied in this work can be related to a craze-like type damage, which includes both highly localised dilatational shear bands, due to cavitation of the EPR particles, and some crazing induced by the stress concentration associated with GF.  相似文献   

18.
This study presents a new approach to toughen Polyamide 6 (PA6) by using a low‐molecular weight liquid natural rubber (LNR). The LNR is prepared by mastication of pale latex crepe in the presence of 0.5 phr Peptizol 7. The PA6/LNR blend samples are characterized in terms melt flow index, hardness, abrasion resistance, impact strength, flexural strength, tensile strength, and thermal properties. The impact strength of PA6 increases by about 67% upon addition of 10% LNR. The percolation model is applied to study of brittle to ductile transition. The percolation threshold for the brittle to ductile transition of the blend was found to be 14.5 wt % LNR, corresponding to the critical volume fraction of the stress volume, Vsc = 0.58, which is consistent with the calculated value of ≈ π/6. The PA6/LNR blends exhibit cavitation and matrix shear yielding, which would be the main contribution to the increases impact strength. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39750.  相似文献   

19.
Some polyolefin elastomers were compared as compatibilizers for blends of polypropylene (PP) with 30 wt % high‐density polyethylene (HDPE). The compatibilizers included a multiblock ethylene–octene copolymer (OBC), two statistical ethylene–octene copolymers (EO), two propylene–ethylene copolymers (P/E), and a styrenic block copolymer (SBC). Examination of the blend morphology by AFM showed that the compatibilizer was preferentially located at the interface between the PP matrix and the dispersed HDPE particles. The brittle‐to‐ductile (BD) transition was determined from the temperature dependence of the blend toughness, which was taken as the area under the stress–strain curve. All the compatibilized blends had lower BD temperature than PP. However, the blend compatibilized with OBC had the best combination of low BD temperature and high toughness. Examination of the deformed blends by scanning electron microscopy revealed that in the best blends, the compatibilizer provided sufficient interfacial adhesion so that the HDPE domains were able to yield and draw along with the PP matrix. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
The intrinsically impact brittle nature of the PC/PET blends can be effectively toughened by incorporating butylacrylate core-shell rubber. The rubber-modified PC/PET blend possess both excellent low temperature impact properties and reduced notch sensitivity. The ductile-brittle transition temperature of the blend decreases with the increase of rubber content. The presence of rubber in the PC/PET blend does not relieve the strain rate induced yield stress increase. Two separate modes, localized shear yielding and mass hear yielding, work simultaneously in the rubber toughening mechanism. The plane-strain localized shear yielding dominates the toughening mechanism at lower temperature and results in brittle failure. At higher temperature, the planestress mass shear yielding dominates the toughening mechanism and results in ductile failure. The critical plastic zone volume can be used to interpret the observed phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号