首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rubberwood flour and cellulose have been plasticized by cyanoethylation and then blended with low‐density polyethylene (LDPE). A small quantity of epoxy functionalized polyethylene i.e., polyethylene‐co‐glycidyl methacrylate (PEGMA) has been added to further enhance the mechanical properties. The mechanical properties were measured according to the standard ASTM methods. SEM analysis was performed for both fractured and unfractured blend specimens. The mechanical properties were improved by the addition of PEGMA compatibilizer. LDPE blends with cyanoethylated wood flour (CYWF) showed higher tensile strength and modulus than cyanoethylated cellulose CYC‐LDPE blends. However CYC‐LDPE blends exhibited higher relative elongation at break values as compared with the former. The TGA analysis showed lowering of thermal stability as the filler content is increased and degradation temperature of LDPE is shifted slightly to lower temperature. DSC analysis showed loss of crystallinity for the LDPE phase as the filler content is increased for both types of blends. Dielectric properties of the blends were similar to LDPE, but were lowered on adding PEGMA. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 219–237, 2006  相似文献   

2.
Biodegradable blends of LDPE and cellulose acetate phthalate have been prepared. Maleic anhydride‐grafted LDPE has been added as a compatibilizer to this blend. The elastic modulus and tensile strength has been considerably improved by adding LDPE‐g‐maleic anhydride compatibilizer. Scanning electron microscope micrographs reflected the observed results for the increase in mechanical properties of the blend. Further blend morphology exhibited a deformed matrix for the compatibilized blends. Thermogravimetric analysis studies showed two‐stage degradation for the blends. Differential scanning calorimetry thermograms showed a loss of crystallinity for the LDPE phase. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

3.
Studies on the mechanical properties of acetylated and phthalated starch blends with low density polyethylene (LDPE) were performed with and without LDPE‐co‐glycidyl methacrylate copolymer as compatibilizer. Impact and tensile properties of the blend specimens were measured following standard ASTM methods. Thermogravimetric analysis of esterified starches and of the blends were also conducted. Scanning electron microscopy was used to analyze the fractured and unfractured blends. Results indicate a significant improvement in the mechanical properties by starch esterification, which is further enhanced by the addition of the compatibilizer. Copyright © 2004 Society of Chemical Industry  相似文献   

4.
In this study, the mechanical and thermal properties of low‐density polyethylene (LDPE)/thermoplastic tapioca starch blends were determined with LDPE‐g‐dibutyl maleate as the compatibilizer. Mechanical testing for the evaluation of the impact strength and tensile properties was carried our as per standard ASTM methods. Thermogravimetric analysis and differential scanning calorimetry were also used to assess the thermal degradation of the blends. Scanning electron micrographs were used to analyze fracture and blend morphologies. The results show significant improvement in the mechanical properties due to the addition of the compatibilizer, which effectively linked the two immiscible blend components. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1109–1120, 2006  相似文献   

5.
The present work considers the evaluation of recycled polymers, which are generally incompatible and are degraded during recycling with fatal consequences to their thermal and mechanical properties. Regarding this subject, the synthesis of a new compatibilizer in network form was carried out in order to counter such incompatibility. In this sense, low density polyethylene (LDPE) and poly(ethylene terephthalate) (PET) were compatibilized via the implementation of an interpenetrating polymer network (IPN), which was specifically synthesized to possess chemical groups that are akin to both plastics, PET and LDPE. The effects of the relative amount of poly(acrylic acid) (PAA) in the compatibilizer and the amount in the blends of PET/LDPE were evaluated. The results show that mechanical properties and interfacial adhesion of PET/LDPE blends were modified and improved with the addition of the synthesized compatibilizer compared with a commercial compatibilizer (polyethylene grafted with maleic anhydride, PE‐g‐AA). © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43704.  相似文献   

6.
Dynamically vulcanized blends of polyoxymethylene (POM) and ethylene propylene diene terpolymer (EPDM) with and without compatibilizer were prepared by melt mixing in a twin screw extruder. Maleic anhydride (MAH) grafted EPDM (EPDM‐g‐MAH) has been used as a compatibilizer. Dicumyl peroxide was used for vulcanizing the elastomer phase in the blends. Mechanical, dynamical mechanical, thermal, and morphological properties of the blend systems have been investigated as a function of blend composition and compatibilizer content. The impact strength of both dynamically vulcanized blends and compatibilized/dynamically vulcanized blends increases with increase in elastomer content with decrease in tensile strength. Dynamic mechanical analysis shows decrease in tanδ values as the elastomer and compatibilizer content increased. Thermograms obtained from differential scanning calorimetric studies reveal that compatibilized blends have lower Tm values compared to dynamically vulcanized blends, which confirms strong interaction between the plastic and elastomer phase. Scanning electron microscopic observations on impact fractured surface indicate reduction in particle size of elastomer phase and its high level of dispersion in the POM matrix. In the case of compatibilized blends high degree of interaction between the component polymers has been observed. POLYM. ENG. SCI., 47:934–942, 2007. © 2007 Society of Plastics Engineers  相似文献   

7.
The effects of the starch content, photosensitizer content, and compatibilizer on the photobiodegradability of low‐density polyethylene (LDPE) and banana starch polymer blend films were investigated. The compatibilizer and photosensitizer used in the films were PE‐graft‐maleic anhydride (PE‐g‐MA) and benzophenone, respectively. Dried banana starch at 0–20% (w/w) of LDPE, benzophenone at 0–1% (w/w) of LDPE, and PE‐g‐MA at 10% (w/w) of banana starch were added to LDPE. The photodegradation of the blend films was performed with outdoor exposure. The progress of the photodegradation was followed by determining the carbonyl index derived from Fourier transform IR measurements and the changes in tensile properties. Biodegradation of the blend films was investigated by a soil burial test. The biodegradation process was followed by measuring the changes in the physical appearance, weight loss, and tensile properties of the films. The results showed that both photo‐ and biodegradation rates increased with increasing amounts of banana starch, whereas the tensile properties of the films decreased. The blends with higher amounts of benzophenone showed higher rates of photodegradation, although their biodegradation rates were reduced with an increase in benzophenone content. The addition of PE‐g‐MA into polymer blends led to an increase in the tensile properties whereas the photobiodegradation was slightly decreased compared to the films without PE‐g‐MA. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2725–2736, 2006  相似文献   

8.
LDPE/PA6 binary blends and LDPE/PA6/compatibilizer ternary blends were prepared in a Brabender extruder, equipped with a prototype static mixer. Compatibility of the components was estimated by rheological properties (viscosity and a melt flow index), and observations of the structure were made with the help of scanning electron microscopy and tensile strength. It was found that the blends' structure and properties are dependent on the recipe content of the polymer blends and the conditions of their manufacturing. Uniformity of the blends of the thermodynamically immiscible polymers was improved by using a prototype static mixer giving mechanical compatibilization and a compatibilizer giving chemical compatibilization. LDPE grafted with a maleic anhydride (LDPE-g-MAH) was used as a compatibilizer. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 719–727, 1998  相似文献   

9.
The effect of a N,N′‐disubstituted 1,4‐phenylenediamine stabilizer and styrene‐butadiene block copolymer (SB)/ethylene‐propylene elastomer (EPDM) compatibilizer on mechanical properties and phase structure of pre‐aged low‐density polyethylene (LDPE; a model of aged recyclate)/high‐impact polystyrene (HIPS) blends was studied. A strong cooperative effect between the stabilizer and compatibilizer on the impact strength and fineness of the phase structure of LDPE/HIPS blends was found. Analysis of chemical reactions assumed to proceed in the system during processing led to the conclusion that improvement in the impact strength and phase structure was accounted for by reactive formation of a LDPE‐SB graft copolymer in a process supported by the presence of the bifunctional amine‐based stabilizer. The mixture of the amine stabilizer with SB/EPDM is a very promising upgrading system for post‐consumer plastic waste containing pre‐oxidized LDPE. J. VINYL. ADDIT. TECHNOL. 12:58–65, 2006. © 2006 Society of Plastics Engineers.  相似文献   

10.
A low molecular weight bisphenol‐A type epoxy resin was used as a reactive compatibilizer for poly(lactic acid) (PLA)/polyamide 610 (PA 610) biomass blends. To the best of our knowledge, this blend is the first biomass PA 610 blend in the literature. The epoxy functional groups could react with the terminal groups of both PLA and PA 610. An ester–amide interchange reaction led to a polyester–polyamide copolymer formation, and improved the compatibility of PLA and PA 610. The blends with epoxy resin showed an enhancement in the phase dispersion and interfacial adhesion compared with the blend without epoxy resin. The differential scanning calorimetry (DSC) analysis showed that the crystallization peak temperatures decreased with increasing epoxy content. The melting temperature of PA 610 decreased with the addition of PLA, but remained unchanged with increased compatibilizer dosages. The dynamic mechanical analysis (DMA) showed that the glass transition temperature (Tg) of the blend, with the addition of 0.5 phr epoxy resin, slightly increased compared with that of neat PLA. However, the Tg of the blends remained unchanged with increasing epoxy resin content, and the higher content of epoxy resin in the blends resulted in improved mechanical properties and higher melt viscosity. The unnotched impact test showed that PA 610 could toughen PLA with the addition of epoxy resin. Moreover, the no‐break unnotched impact behavior was observed with the medium content of the compatibilizer, improving the notch sensitivity of PLA. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2563–2571, 2013  相似文献   

11.
The dynamic vulcanization process, usually used for the preparation of thermoplastic elastomers, was used to prepare polypropylene (PP)/epoxy blends. The blends had crosslinked epoxy resin particles finely dispersed in the PP matrix, and they were called dynamically cured PP/epoxy blends. Maleic anhydride grafted polypropylene (MAH‐g‐PP) was used as a compatibilizer. The effects of the reactive compatibilization and dynamic cure were studied with rheometry, capillary rheometry, and scanning electron microscopy (SEM). The crystallization behavior and mechanical properties of PP/epoxy, PP/MAH‐g‐PP/epoxy, and dynamically cured PP/epoxy blends were also investigated. The increase in the torque at equilibrium for the PP/MAH‐g‐PP/epoxy blends indicated the reaction between maleic anhydride groups of MAH‐g‐PP and the epoxy resin. The torque at equilibrium of the dynamically cured PP/epoxy blends increased with increasing epoxy resin content. Capillary rheological measurements also showed that the addition of MAH‐g‐PP or an increasing epoxy resin content increased the viscosity of PP/epoxy blends. SEM micrographs indicated that the PP/epoxy blends compatibilized with PP/MAH‐g‐PP had finer domains and more obscure boundaries than the PP/epoxy blends. A shift of the crystallization peak to a higher temperature for all the PP/epoxy blends indicated that uncured and cured epoxy resin particles in the blends could act as effective nucleating agents. The spherulites of pure PP were larger than those of PP in the PP/epoxy, PP/MAH‐g‐PP/epoxy, and dynamically cured PP/epoxy blends, as measured by polarized optical microscopy. The dynamically cured PP/epoxy blends had better mechanical properties than the PP/epoxy and PP/MAH‐g‐PP/epoxy blends. With increasing epoxy resin content, the flexural modulus of all the blends increased significantly, and the impact strength and tensile strength increased slightly, whereas the elongation at break decreased dramatically. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1437–1448, 2004  相似文献   

12.
Tapioca starch in both glycerol‐plasticized and in unplasticized states was blended with high‐density polyethylene (HDPE) using HDPE‐g‐maleic anhydride as the compatibilizer. The impact and tensile properties of the blends were measured according to ASTM methods. The results reveal that blends containing plasticized starch have better mechanical properties than those containing unplasticized starch. High values of elongation at break at par with those of virgin HDPE could be obtained for blends, even with high loading of plasticized starch. Morphological studies by SEM microscopy of impact‐fractured specimens of such blends revealed a ductile fracture, unlike blends with unplasticized starch at such high loadings, which showed brittle fracture, even with the addition of compatibilizer. In general, blends of HDPE and plasticized starch with added compatibilizer show better mechanical properties than similar blends containing unplasticized starch. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 863–872, 2001  相似文献   

13.
A series of low‐density polyethylene (LDPE) blends with different amounts of ethylene–vinyl–acetate (EVA) was prepared and irradiated with 10 MeV electron beam in the range of 0–250 kGy at room temperature in air. EVA was used as a compatibilizer and softener in four different amounts: 5, 10, 20, and 30 wt %, based on polyethylene (PE). The crosslinking of the samples was studied on the basis of gel‐content measurements as well as some thermal and mechanical properties of the specimens. The results indicated that the LDPE and LDPE–EVA blends could be crosslinked by a high‐energy electron beam, of which their thermal and mechanical properties changed effectively, however, because of EVA content of the polymer; the blends were more sensitive to lower doses of radiation. These studies were carried out to obtain a suitable compound for heat‐shrinkable tubes. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1049–1052, 2004  相似文献   

14.
This paper describes the effects of composition and processing conditions on the efficiency of the compatibilizer prepared from a thermotropic liquid crystalline polymer (TLCP) and the sodium salt of a poly(ethylene‐cor‐acrylic acid) ionomer (EAA‐Na) in TLCP/low‐density polyethylene (LDPE) blends and TLCP/high‐density polyethylene (HDPE) blends. The TLCP‐ionomer graft copolymer formed by a melt acidolysis reaction effectively reduced the interfacial tension between TLCP and polyethylene, which improved impact strength and toughness of the compatibilized blends. Higher processing temperatures for the reactive extrusion produced a more efficient compatibilizer, presumably due to increased graft‐copolymer formation, but the reaction temperature had little effect on the impact strength of compatibilized blends for temperatures above 300°C. The addition of the compatibilizer to TLCP/LDPE blends significantly increased the melt viscosity due to increased interfacial adhesion. The TLCP/EAA‐Na ratio used to prepare the compatibilizer had little effect on the performance of the compatibilizer. Although the compatibilizer can be prepared in situ by blending and extruding a ternary blend of TLCP/EAA‐Na/polyethylene, pre‐reacting the compatibilizer resulted in blends with improved toughness and elongation.  相似文献   

15.
A novel series of shape memory blends of trans‐1,4‐polyisoprene (TPI) and low‐density polyethylene (LDPE) were prepared using a simple physical blending method. The mechanical, thermal and shape memory properties of the blends were studied and schemes proposed to explain their dual and triple shape memory behaviors. It was found that the microstructures played an important role in the shape memory process. In TPI/LDPE blends, both the TPI crosslinking network and LDPE crystalline regions could work as fixed domains, while crystalline regions of LDPE or TPI could act as reversible domains. The shape memory behaviors were determined by the components of the fixed and reversible domains. When the blend ratio of TPI/LDPE was 50/50, the blends showed excellent dual and triple shape memory properties with both high shape fixity ratio and shape recovery ratio. © 2017 Society of Chemical Industry  相似文献   

16.
Summary: The effectiveness of some thermoplastic elastomers grafted with maleic anhydride (MA) or with glycidyl methacrylate (GMA) as compatibilizer precursors (CPs) for blends of low density polyethylene (LDPE) with polyamide‐6 (PA) has been studied. The CPs were produced by grafting different amounts of MA or GMA onto a styrene‐block‐(ethylene‐co‐1‐butene)‐block‐styrene copolymer (SEBS) (KRATON G 1652), either in the melt or in solution. A commercially available SEBS‐g‐MA copolymer with 1.7 wt.‐% MA (KRATON FG 1901X) was also used. The effect of the MA concentration and of other characteristics of the SEBS‐g‐MA CPs was also studied. The specific interactions between the CPs and the blends components were investigated through characterizations of the binary LDPE/CP and PA/CP blends, in the whole composition range. It was demonstrated that the SEBS‐g‐GMA copolymers display poor compatibilizing effectiveness due to cross‐linking resulting from reactions of the epoxy rings of these CPs with both the amine and the carboxyl end groups of PA. On the contrary, the compatibilizing efficiency of the MA‐grafted elastomers, as revealed by the thermal properties and the morphology of the compatibilized blends, was shown to be excellent. The results of this study confirm that the anhydride functional groups possess considerably higher efficiency, for the reactive compatibilization of LDPE/PA blends, than those of the ethylene‐acrylic acid and ethylene‐glycidyl methacrylate copolymers investigated in previous works.

SEM micrograph of the 75/25 LD08/PA blend (with 2 phr SEBSMA1).  相似文献   


17.
The abiotic UV‐degradation behavior of oxodegradable LDPE was investigated in the presence of thermoplastic pea starch (TPPS) in this study. Oxodegradable LDPE was first melt‐blended with thermoplastic pea starch (TPPS) using an internal mixing chamber to enhance the abiotic oxidative degradation of oxodegradable LDPE. Because of their different affinity, maleated polyethylene was added as compatibilizer. Tensile properties, thermal properties, and morphology of resulting melt‐blends were determined at different content in TPPS. High content in TPPS (40 wt %) could be readily added to oxodegradable LDPE without affecting the tensile properties of resulting melt‐blends. UV‐ageing studies on compatibilized TPPS/oxodegradable LDPE melt‐blends were carried out by Attenuated Total Reflectance infrared spectroscopy (ATR‐FTIR), Dynamic Thermomechanical Analyses (DMTA) and Differential Scanning Calorimetry (DSC) under abiotic conditions. These results suggested a synergistic effect on the UV‐ageing of TPPS‐based melt‐blends provided by both components during the first stage of UV‐irradiation. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

18.
In this work, uncompatibilized and compatibilized blends of low density polyethylene (LDPE) and poly(lactic acid) (PLA) were subjected to several investigations: Fourier transform infrared (FTIR) spectroscopy, morphological analysis and mechanical testing (tensile, impact, microhardness). The copolymer (ethylene-co-glycidyl methacrylate) (EGMA) was used as compatibilizer. The percentages of PLA in LDPE/PLA samples ranged from 0 to 100 wt% while the EGMA was added to the blend 60/40 (LDPE/PLA) at concentrations of 2, 5, 7, 10, 15 and 20 parts per hundred (phr). FTIR analysis showed the absence of any interaction between LDPE and PLA, but after addition of compatibilizer, reactions between epoxy groups of EGMA and carboxylic or hydroxyl groups of PLA were confirmed. Tensile and impact tests revealed a loss of ductility of LDPE with the incorporation of PLA, except for the composition 80/20 (LDPE/PLA). However, the addition of 15 phr of EGMA led to the maximum increase in the elongation-at-break (about three times the value of uncompatibilized blend) and in the impact strength, but a marginal improvement was observed for tensile strength. SEM micrographs confirmed that the enhancement of mechanical properties is due to the improvement of the interfacial adhesion between different phases owing to the presence of EGMA. The microhardness values of the different blends (uncompatibilized or compatibilized) were in good agreement with the macroscopic mechanical properties (tensile and impact strengths).  相似文献   

19.
A method concerning with the simultaneous reinforcing and toughening of polypropylene (PP) was reported. Dynamical cure of the epoxy resin with 2‐ethylene‐4‐methane‐imidazole (EMI‐2,4) was successfully applied in the PP/maleic anhydride‐grafted ethylene‐vinyl acetate copolymer (MAH‐g‐EVA), and the obtained blends named as dynamically cured PP/MAH‐g‐EVA/epoxy blends. The stiffness and toughness of the blends are in a good balance, and the smaller size of epoxy particle in the PP/MAH‐g‐EVA/epoxy blends shows that MAH‐g‐EVA was also used as a compatibilizer. The structure of the dynamically cured PP/MAH‐g‐EVA/epoxy blends is the embedding of the epoxy particles by the MAH‐g‐EVA. The cured epoxy particles as organic filler increases the stiffness of the PP/MAH‐g‐EVA blends, and the improvement in the toughness is attributed to the embedded structure. The tensile strength and flexural modulus of the blends increase with increasing the epoxy resin content, and the impact strength reaches a maximum of 258 J/m at the epoxy resin content of 10 wt %. DSC analysis shows that the epoxy particles in the dynamically cured PP/MAH‐g‐EVA/epoxy blends could have contained embedded MAH‐g‐EVA, decreasing the nucleating effect of the epoxy resin. Thermogravimetric results show the addition of epoxy resin could improve the thermal stability of PP, the dynamically cured PP/MAH‐g‐EVA/epoxy stability compared with the pure PP. Wide‐angle x‐ray diffraction analysis shows that the dynamical cure and compatibilization do not disturb the crystalline structure of PP in the blends. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
Poly(ethylene‐co‐vinyl alcohol) (EVOH) was used as a compatibilizer to make blends of low‐density polyethylene (LDPE) and plasticized starch (TS). The tensile properties and impact strength were measured and compared with those of neat LDPE. The morphology of the blend specimens, both fractured and unfractured, was observed by scanning electron microscopy. Comparison of the properties showed that the impact strength of the blend improves significantly by the addition of a compatibilizer even with a high TS loading of 40 and 50% (by weight). A high elongation at break almost matching that of neat polyethylene was also obtained. The blend morphology of the etched specimens revealed fine dispersion of the starch in the polyethylene matrix, while the fracture surface morphology clearly indicate that the failure of compatibilized blends occurs mainly by the ductile mode. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3126–3134, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号