首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper studies the classical problem of output regulation for linear discrete‐time systems subject to actuator saturation and extends the recent results on continuous‐time systems to discrete‐time systems. The asymptotically regulatable region, the set of all initial conditions of the plant and the exosystem for which the asymptotic output regulation is possible, is characterized in terms of the null controllable region of the anti‐stable subsystem of the plant. Feedback laws are constructed that achieve regulation on the asymptotically regulatable region. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
An adaptive low-gain integral control framework is developed for tracking constant reference signals in a context of finite-dimensional, exponentially stable, single-input, single-output linear systems with positive steady-state gain and subject to locally Lipschitz, monotone input and output nonlinearities of a general nature: the input nonlinearity is required to satisfy an asymptotic growth condition (of sufficient generality to accommodate nonlinearities ranging from saturation to exponential growth) and the output nonlinearity is required to satisfy a sector constraint in those cases wherein the input nonlinearity is unbounded.  相似文献   

3.
Continuous-time low-gain integral control strategies are presented for tracking of constant reference signals for finite-dimensional, continuous-time, asymptotically stable, single-input single-output, linear systems subject to a globally Lipschitz and non-decreasing input nonlinearity and a locally Lipschitz, non-decreasing and affinely sector-bounded output nonlinearity. Both non-adaptive (but possibly time varying) and adaptive integrator gains are considered. In particular, it is shown that applying error feedback using an integral controller ensures asymptotic tracking of constant reference signals, provided that (a) the steady-state gain of the linear part of the plant is positive, (b) the positive integrator gain is ultimately sufficiently small and (c) the reference value is feasible in a very natural sense. The classes of actuator and sensor nonlinearities under consideration contain standard nonlinearities important in control engineering such as saturation and deadzone.  相似文献   

4.
This article addresses the output feedback control for discrete‐time Markov jump linear systems. With fully known transition probability, sufficient conditions for an internal model based controller design are obtained. For the case where the transition probabilities are uncertain and belong to a convex polytope with known vertices, we provide a sufficient LMI condition that guarantees the norm of the closed‐loop system is below a prescribed level. That condition can be improved through an iterative procedure. Additionally, we are able to deal with the case of cluster availability of the Markov mode, provided that some system matrices do not vary within a given cluster, an assumption that is suitable to deal with packet dropout models for networked control systems. A numerical example shows the applicability of the design and compares it with previous results. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
The problem of global robust stabilization is studied by both continuous‐time and sampled‐data output feedback for a family of nonminimum‐phase nonlinear systems with uncertainty. The uncertain nonlinear system considered in this paper has an interconnect structure consisting of a driving system and a possibly unstable zero dynamics with uncertainty, ie, the uncertain driven system. Under a linear growth condition on the uncertain zero dynamics and a Lipschitz condition on the driving system, we show that it is possible to globally robustly stabilize the family of uncertain nonminimum‐phase systems by a single continuous‐time or a sampled‐data output feedback controller. The sampled‐data output feedback controller is designed by using the emulated versions of a continuous‐time observer and a state feedback controller, ie, by holding the input/output signals constant over each sampling interval. The design of either continuous‐time or sampled‐data output compensator uses only the information of the nominal system of the uncertain controlled plant. In the case of sampled‐data control, global robust stability of the hybrid closed‐loop system with uncertainty is established by means of a feedback domination method together with the robustness of the nominal closed‐loop system if the sampling time is small enough.  相似文献   

6.
In this paper, we study the cooperative robust output regulation problem for discrete‐time linear multi‐agent systems with both communication and input delays by a distributed internal model approach. We first introduce the distributed internal model for discrete‐time multi‐agent systems with both communication and input delays. Then, we define the so‐called auxiliary system and auxiliary augmented system. Finally, we solve our problem by showing, under some standard assumptions, that if a distributed state feedback control or a distributed output feedback control solves the robust output regulation problem of the auxiliary system, then the same control law solves the cooperative robust output regulation problem of the original multi‐agent systems.  相似文献   

7.
This paper studies the problems of stabilization of discrete‐time linear systems with a single input delay. By developing the methodology of pseudo‐predictor feedback, which uses the (artificial) closed‐loop system dynamics to predict the future state, memoryless state feedback control laws are constructed to solve the problem. Necessary and sufficient conditions are obtained to guarantee the stability of the closed‐loop system in terms of the stability of a class‐difference equations. It is also shown that the proposed controller achieves semi‐global stabilization of the system if its actuator is subject to either magnitude saturation or energy constraints under the condition that the open‐loop system is only polynomially unstable. Numerical examples have been worked out to illustrate the effectiveness of the proposed approaches. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
The research on discrete‐time higher‐order sliding mode has received a considerable attention recently. Systems with unmatched uncertainties are common in practice; however, the existing discrete‐time higher‐order sliding mode control algorithms are designed considering only matched uncertainty. This paper proposes a technique to design discrete‐time higher‐order sliding mode control for an uncertain LTI system in the presence of unmatched uncertainty. The proposed technique is numerically simulated and experimentally validated on an electromechanical rectilinear plant. Various experiments are conducted considering the several operational conditions of electromechanical systems in industries to verify the performance of the proposed controller.  相似文献   

9.
This paper presents an approach to discrete‐time robust H control for a class of nonlinear uncertain systems on the basis of the use of Sum Quadratic Constraints. The approach involves controllers, which include copies of the system nonlinearities in the controller. The nonlinearities being considered are those that satisfy a certain global Lipschitz condition. The linear part of the controller is synthesized using linear robust H control theory, and this leads to a nonlinear controller, which gives an upper bound on the attainable disturbance attenuation level. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, we study the input quantization problem for a class of uncertain nonlinear systems. The quantizer adopted belongs to a class of sector‐bounded quantizers, which basically include all the currently available static quantizers. Different from the existing results, the quantized input signal, rather than the input signal itself, is used to design the state observers, which guarantees that the state estimation errors will eventually converge to zero. Because the resulting system may be discontinuous and non‐smooth, the existence of the solution in the classical sense is not guaranteed. To cope with this problem, we utilize the non‐smooth analysis techniques and consider the Filippov solutions. A robust way based on the sector bound property of the quantizers is used to handle the quantization errors such that certain restrictive conditions in the existing results are removed and the problem of output feedback control with input signal quantized by logarithmic (or hysteresis) quantizers is solved for the first time. The designed controller guarantees that all the closed‐loop signals are globally bounded and the tracking error exponentially converges towards a small region around zero, which is adjustable. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
This article presents a switched model reference adaptive controller for discrete‐time piecewise linear systems. In the spirit of the work by Landau in the late seventies, proof of asymptotic stability of the closed‐loop error system is obtained, recasting its dynamics as a feedback system and showing the feedforward and the feedback paths are both passive. The challenge is that both paths can be piecewise linear. Numerical results show excellent performance of the proposed controller even in the face of sudden variations of the plant parameters. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
This article deals with the problem of stabilization of linear systems with time‐varying input delay by an event‐triggered delay independent truncated predictor feedback law, either of the state feedback type or the output feedback type. Only the information of a delay bound rather than the delay itself is required in the design of both control laws and event‐triggering strategies. For both the state feedback case and the output feedback case, an admissible delay bound that guarantees the stabilizability of a general linear system is established, and the Zeno behavior is shown to be excluded. For linear systems with all open‐loop poles at the origin or in the open left‐half plane, stabilization can be achieved for a delay under an arbitrarily large bound.  相似文献   

13.
A novel discrete‐time repetitive controller design for time‐delay systems subject to a periodic reference and exogenous periodic disturbances is presented. The main idea behind the proposed approach is to take advantage of the plant delay in the controller design, and not to compensate for the effect of this delay. To facilitate this concept, we introduce an appropriate time‐delay and a compensator in a positive feedback connection with the plant, such that a generator for periodic signals is constructed. Then a proportional controller is used to stabilize the closed‐loop system. The tracking control capability is thus guaranteed according to the internal model principle (IMP). In addition, to attenuate external periodic disturbances, a disturbance observer (DO) is developed to simultaneously achieve reference tracking and disturbance rejection. The possible fractional delay due to the digital discretization is handled by using a fractional delay filter approximation. The proposed controller has a simple structure, in which only a proportional parameter and a low‐pass filter are required to be chosen. The closed‐loop stability conditions and a robustness analysis under model uncertainties are studied. Numerical simulations and practical experiments on a servo motor system are conducted to verify the feasibility and simplicity of the proposed controller. Copyright © 2011 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

14.
In this paper, robust adaptive output feedback control is studied for a class of discrete‐time nonlinear systems with functional nonlinear uncertainties of the Lipschitz type and unknown control directions. In order to construct an output feedback control, the system is transformed into the form of a nonlinear autoregressive moving average with eXogenous inputs (NARMAX) model. In order to avoid the noncausal problem in the control design, future output prediction laws and parameter update laws with the dead‐zone technique are constructed on the basis of the NARMAX model. With the employment of the predicted future outputs, a constructive output feedback adaptive control is proposed, where the discrete Nussbaum gain technique and the dead‐zone technique are used in parameter update laws. The effect of the functional nonlinear uncertainties is compensated for, such that an asymptotic tracking performance is achieved, whereas other signals in the closed‐loop systems are guaranteed to be bounded. Simulation studies are performed to demonstrate the effectiveness of the proposed approach. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
This paper investigates the robust control for the Euler‐Lagrange (EL) system with input saturation by using the integral sliding mode control and adaptive control. An integral sliding mode surface that is suitable for solving the problem of the input constraint is given based on the saturation function. By using the integral sliding mode surface, two robust antisaturation controllers are designed for the EL system with external disturbances. The first controller can deal with the external disturbances with known bounds, whereas the second one can compensate the external disturbances with unknown bounds by using the adaptive control. Finally, the effectiveness of the proposed controllers is demonstrated by strict theoretical analysis and numerical simulations.  相似文献   

16.
In this paper, the problem of sampled‐data model predictive control (MPC) is investigated for linear networked control systems with both input delay and input saturation. The delay‐induced nonlinearity is overapproximatively modeled as a polytopic inclusion. The nonlinear behavior of input saturation is expressed as a convex polytope. The resulting closed‐loop systems are represented as linear systems with polytopic and additive norm‐bounded uncertainties. The aim is to determine a robust MPC controller that asymptotically stabilizes the uncertain system at the origin with a certain level of quadratic performance. The effectiveness of the proposed algorithm is demonstrated by a numerical example.  相似文献   

17.
This paper studies the finite‐time stabilizing control problem for a class of switched stochastic nonlinear systems (SSNSs) in p‐normal form. The switched systems under consideration possess the powers of different positive rational numbers and the dead‐zone input nonlinearities. Based on the improving finite‐time stability theorem for SSNSs established in this paper, a general framework to address common state feedback for SSNSs is developed by adopting the common Lyapunov function–based adding a power integrator technique. It is proved that the proposed controller renders the trivial solution of the closed‐loop system uniformly finite‐time stable in probability under arbitrary switchings. Finally, simulation results are given to confirm the validity of the proposed approach.  相似文献   

18.
This paper develops a systematic design scheme to construct a linear sampled‐data output feedback controller that semi‐globally asymptotically stabilizes a class of uncertain systems with both higher‐order and linear growth nonlinearities. To deal with the uncertain coefficients in the systems, a robust state feedback stabilizer and a reduced‐order sampled‐data observer, both in the linear form, are constructed and then integrated together. The semi‐global attractivity and local stability are delicately proved by carefully selecting a scaling gain using the output feedback domination approach and a sampling period sufficiently small to restrain the state growth under a zero‐order‐holder input. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
In this work, we present a novel adaptive finite‐time fault‐tolerant control algorithm for a class of multi‐input multi‐output nonlinear systems with constraint requirement on the system output tracking error. Both parametric and nonparametric system uncertainties can be effectively dealt with by the proposed control scheme. The gain functions of the nonlinear systems under discussion, especially the control input gain function, can be not fully known and state‐dependent. Backstepping design with a tan‐type barrier Lyapunov function and a new structure of stabilizing function is presented. We show that under the proposed control scheme, finite‐time convergence of the output tracking error into a small set around zero is guaranteed, while the constraint requirement on the system output tracking error will not be violated during operation. An illustrative example on a robot manipulator model is presented in the end to further demonstrate the effectiveness of the proposed control scheme. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
This paper deals with the problem of global leader‐following consensus of a group of discrete‐time general linear systems with bounded controls. For each follower agent in the group, we construct both a bounded state feedback control law and a bounded output feedback control law. The feedback laws for each input of an agent use a multi‐hop relay protocol, in which the agent obtains the information of other agents through multi‐hop paths in the communication network. The number of hops each agent uses to obtain its information about other agents for an input is less than or equal to the sum of the number of real eigenvalues on the unit circle and the number of pairs of complex eigenvalues on the unit circle of the subsystem corresponding to the input, and the feedback gains are constructed from the adjacency matrix of the communication network. We show that these control laws achieve global leader‐following consensus when the communication topology among follower agents forms a strongly connected and detailed balanced directed graph and the leader is a neighbor of at least one follower agent. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号