首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
The weldability of a commercial, impact-modified blend of poly(phenylene oxide) and polyamide 6,6 is assessed through 120 Hz vibration welds. Relative weld strengths on the order of 100%, with very high strains to failure, have been demonstrated.  相似文献   

2.
The weldabilities of two commercial blends of polycarbonate (PC) and acrylonitrile‐butadiene‐styrene (ABS) to themselves and to several other resins and blends are assessed through 120 Hz vibration welds of 6.35‐ and 3.2‐mm‐thick specimens. While the thicker specimens of both blends have relative weld strengths of 83%, the thinner specimens in one of the grades have a lower relative weld strength of 73%. Welds of thicker specimens of both grades to PC have relative strengths of 85%. Again, welds of thinner specimens of one of the grades to PC have a lower relative strengths of 68%. Welds of the thinner specimens of this grade with ABS have relative strengths of 85%. Welds of this material with poly(butylene terephthalate) (PBT), a PC/PBT blend, modified poly(phenylene oxide), and a poly(phenylene oxide)/polyamide blend, have relative weld strengths of 45%, 26%, 76%, and 20%, respectively.  相似文献   

3.
The weldability of poly(vinyl chloride) (PVC) is assessed through hot‐tool and 120‐Hz vibration welds. Equivalent strengths have been demonstrated for welds made by both of these welding techniques. For two grades of PVC, relative weld strengths of 85 and 97%, with corresponding failure strains of about 2.5 and 3.3%, respectively, have been demonstrated.  相似文献   

4.
The weldability of three blends of poly(phenylene oxide) and poly(phenylene sulfide), each with a different level or type of impact modifier, is assessed through 120 and 240 Hz vibration welds. The type of impact modifier is shown to have a large effect on the strength and ductility of welds. Weld strength in these blends is shown to be sensitive to the weld frequency; higher weld strengths are attained at the higher weld frequency. In these three blends, maximum relative weld strengths of about 70%, 85%, and 87% have been demonstrated at a weld frequency of 240 Hz. The highest weld strength in each of these three blends is achieved at different weld pressures.  相似文献   

5.
The weldability of poly(methyl methacrylate) (PMMA) to itself and to polycarbonate (PC), poly(butylene terephthalate) (PBT), and modified poly(phenylene oxide) (M-PPO) is assessed through 120 and 250 Hz vibration welds. Weld strengths equal to those of the base resin have been demonstrated in welds of PMMA and M-PPO to themselves. In welds of PMMA to PC and to M-PPO, weld strengths equal to those of PC and M-PPO, respectively, have been demonstrated. PMMA does not weld well to PBT; the highest weld strength obtained was 21% of the strength of PBT resin.  相似文献   

6.
Vibration welding of dissimilar nylons is a promising technique for assembling complex components made of different polymers. The effects of pressure and meltdown on the tensile strength of nylon 6 (PA 6) to nylon 66 (PA 66) vibration welds were determined in this study using an experimental design and three weld geometries. Weld strengths were generally improved by increasing meltdown and decreasing weld pressure. The weld strength was also shown to vary with the position of the lower melting material for T‐welds. Using differential scanning calorimentry and fracture surface analyses, it is concluded that for all geometries, higher weld strengths can be achieved when both materials are melted. Polym. Eng. Sci. 44:760–771, 2004. © 2004 Society of Plastics Engineers.  相似文献   

7.
In induction welding of thermoplastics, induction heating of a gasket, made of a ferromagnetic‐powder‐filled bonding material and placed at the interface of thermoplastic parts to be joined, is used to melt the interface; subsequent solidification of the melt results in a weld. Tensile tests on induction butt‐welds of polycarbonate (PC), poly(butylene terephthalate) (PBT), and polypropylene (PP) are used to characterize achievable weld strengths, and microscopy is used to correlate weld strength with the morphology of failure surfaces. In PC, PBT, and PP relative weld strengths as high as 48%, 43%, and 55% of the respective strengths of PC, PBT, and PP have been demonstrated. Relative weld strengths on the order of 20% have been demonstrated in PC‐to‐PBT welds.  相似文献   

8.
A novel inorganic compound, aluminum hypophosphite (AP), was synthesized successfully and applied as a flame retardant to glass‐fiber‐reinforced polyamide 6 (GF–PA6). The thermal stability and burning behaviors of the GF–PA6 samples containing AP (flame‐retardant GF–PA6) were investigated by thermogravimetric analysis, vertical burning testing (with a UL‐94 instrument), limiting oxygen index (LOI) testing, and cone calorimeter testing (CCT). The thermogravimetric data indicated that the addition of AP decreased the onset decomposition temperatures, the maximum mass loss rate (MLR), and the maximum‐rate decomposition temperature of GF–PA6 and increased the residue chars of the samples. Compared with the neat GF–PA6, the AP‐containing GF–PA6 samples had obviously improved flame retardancy: the LOI value increased from 22.5 to 30.1, and the UL‐94 rating went from no rating to V‐0 (1.6 mm) when the AP content increased from 0 to 25 wt % in GF–PA6. The results of CCT reveal that the heat release rate, total heat release, and MLR of the AP‐containing GF–PA6 samples were lower than those of GF–PA6. Furthermore, the higher additive amount of AP affected the mechanical properties of GF–PA6, but they remained acceptable. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
The conventional vibration welding process of polyamide 66 only has a continuous and steady melt flow during the quasi‐steady phase. The process and resulting welds have been thoroughly investigated. Radiation cross‐linking of polyamide 66 with electron beams alters the material's characteristics. Consequently, the resulting energy balance during vibration welding changes and the squeeze flow is impeded. Additionally, this causes the cross‐linking to attain a residual stiffness above the crystallite melting temperature, thereby influencing the characteristics of the vibration welding process. Further, higher weld temperatures and a change in meltdown behavior can be observed. This leads to a varied relationship amongst the process, structure, and properties for vibration welding cross‐linked polyamide. Hence, weld strengths up to the value of the base material strength are possible. The scope of this article is to investigate the influence of radiation cross‐linking on the material characteristics and, by extension, the resulting processing and welding characteristics. Calorimetric, chemical, rheological, mechanical, and optical investigations serve to highlight the influence of radiation cross‐linking on the vibration welding process of polyamide 66. POLYM. ENG. SCI., 55:2493–2499, 2015. © 2015 Society of Plastics Engineers  相似文献   

10.
Both polyamide 12 (PA 12)/clay and polyamide 6–polyamide 66 copolymer (PA 6/6,6)/clay nanocomposites were prepared by melt intercalation. The incorporation of 4–5 wt % modified clay largely increased the strength, modulus, heat distortion temperature (HDT), and permeation resistance to methanol of the polyamides but decreased the notched impact strength. Incorporation of the clay decreased the melt viscosities of both the PA 12 and PA 6/6,6 nanocomposites. Incorporation of the clay increased the crystallinity of PA 6/6,6 but had little effect on that of PA 12, which explained why the clay obviously increased the glass‐transition temperature of PA 6/6,6 but hardly had any effect on that of PA 12. The dispersion and orientation of both the clay and the polyamide crystals were studied with transmission electron microscopy, scanning electronic microscopy, and X‐ray diffraction. The clay was exfoliated into single layers in the nanocomposites, and the exfoliated clay layers had a preferred orientation parallel to the melt flow direction. Lamellar crystals but not spherulites were initiated on the exfoliated clay surfaces, which were much more compact and orderly than spherulites, and had the same orientation with that of the clay layers. The increase in the mechanical properties, HDT, and permeation resistance was attributed to the orientated exfoliated clay layers and the lamellar crystals. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4782–4794, 2006  相似文献   

11.
Vibration welding is used to assess the weldability of poly(butylene terephthalate) (PBT) and a polycarbonate/poly(butylene terephthalate) blend (PC/PBT) to each other and to other resins and blends: PBT to PC/PBT, PBT to modified poly(phenylene oxide) (M-PPO), PBT to polyetherimide (PEI) and PEI to a 65 wt% mineral-filled polyester blend (65-PF-PEB), PBT to a poly(phenylene oxide)/polyamide blend (PPO/PA), PC/PBT to M-PPO, and PC/PBT to PPO/PA. Based on the tensile strength of the weaker of the two materials in each pair, the following relative weld strengths have been demonstrated: PBT to PC/PBT,98%; PBT to PEI, 95%; 65-PF-PEB to PEI, 92%; and PC/PBT to M-PPO, 73%. PBT neither welds to M-PPO nor to PPO/PA, and PC/PBT does not weld to PPO/PA.  相似文献   

12.
Vibration welding is used to assess the weldability of 16 wt% glass-filled poly(styrene-comaleic anhydride) (16-GF-SMA). Data are presented on the strengths of butt welds for two specimen thicknesses and T-welds for one specimen thickness. The maximum weld strength of butt joints is shown to be only 35% of the tensile strength of the material. T-joints are shown to have only 61% of the strength of butt joints. The relative butt-weld strengths of 16-GF-SMA are much lower than those measured in other glass filled resins: 71% in a 20-wt% glass-filled modified poly(phenylene oxide); 68 and 60%, respectively, in 15- and 30-wt% glass-filled grades of poly(butylene terephthalate); and 58% in a 40-wt% glass-filled polyamide 6,6.  相似文献   

13.
Vibration welds on 30 wt% glass-filled polyetherimide at frequencies of 120, 250, and 400 Hz have shown that weld strengths of the order of 79 MPa with strains to failure of about 1.3% can be obtained in this material.  相似文献   

14.
Thermoplastics reinforced with random glass mat have high strength and stiffness; the fibers dominate the mechanical behavior of these composites. The results of this investigation have shown that fibers are ineffective for reinforcing hot-tool and vibration welded butt welds. The maximum weld strengths attained with GMT are comparable to the strengths of good welds of the unfilled material. The optimum hot-tool welding parameters for the reinforced materials are different from those for the unfilled material. Unfilled polypropylene is easier to weld than unfilled polyamide. This characteristic is also true of the reinforced materials. In vibration welding, high welding pressures and high amplitudes result in lower mechanical properties. The optimum penetration depends on the fiber content of the bulk material. This penetration dependence is different from that for unfilled thermoplastic, for which the mechanical properties are independent of the penetration once a steady state has been attained.  相似文献   

15.
Thermal decomposition of a series of 1 : 1 mixtures of typical polymer waste materials [polyethylene (PE), poly(propylene) (PP), polystyrene (PS), polyacrylonitrile (PAN), polyisoprene, poly(methyl methacrylate) (PMMA), polyamide‐6 (PA‐6), polyamide‐12 (PA‐12), polyamide‐6,6 (PA‐6,6), and poly(1,4‐phenylene terephthalamide) (Kevlar)] with poly(vinyl chloride) (PVC) was examined using thermal analysis and analytical pyrolysis techniques. It was found that the presence of polyamides and PAN promotes the dehydrochlorination of PVC, but PVC has no effect on the main decomposition temperature of polyamides. The hydrogen chloride evolution from PVC is not altered when other vinyl polymers or polyolefins are present. The thermal degradation of PAN is retarded significantly, whereas that of the other vinyl polymers is shifted to a slightly higher temperature in the presence of PVC. Among the pyrolysis products of PAN‐PVC mixture methyl chloride was found in comparable amount to the other gaseous products at 500°C pyrolysis temperature.  相似文献   

16.
Post-industrial waste (PIW) polyamide 6 is successfully used in lieu of commercial virgin polyamide 6, in several automotive applications. The presence of polyamide 66 in the final formulation may affect the mechanical and thermal properties of the PIW polyamide 6 materials. Using unreinforced polyamide 6 from PIW and commercial sources, it was found that the addition of polyamide 66 (below 10 wt.%) lowered the crystallization rate and crystallinity level of all polyamide 6 materials. The thermal and mechanical properties of glass fiber (GF) reinforced PIW polyamide 6 compounds with and without polyamide 66 were also studied. Differential scanning calorimetry (DSC) showed that reinforced materials without polyamide 66 had a higher level of crystallinity. Furthermore, dynamic mechanical analysis (DMA) showed that reinforced compounds without polyamide 66 also had a faster storage modulus buildup immediately after injection molding. Reinforced PIW polyamide 6 compounds without polyamide 66 also exhibited higher tensile and higher vibration weld strengths as well as a thicker heat affected zone (HAZ) than those with polyamide 66, leading to the conclusion that polyamide 66 had a detrimental effect on crystallinity level and consequently on the mechanical properties of GF-reinforced PIW polyamide 6 materials.  相似文献   

17.
Laser transmission welding (LTW) is a technique for joining thermoplastics. During contour LTW, any gaps or spaces between the two parts along the weld seam may prevent a weld from forming. This work presents an experimental study on the effects of material property (carbon black level, glass fibers, and crystallinity), process parameters (laser scan power and scan speed), and weld gap thickness on the strength and microstructure of contour welds made of polycarbonate (PC), polyamide 6 (PA6), and PA6 reinforced with 30% glass fiber. Lap specimens, with weld lines parallel to the load direction during mechanical testing, were used to assess the weld shear strength. The results indicated that low concentrations of laser absorbing pigment accompanied by high laser power improve gap bridging. The study also indicated that a novel noncontact test method can be used to search for the optimized process parameters for gap bridging. The maximum gaps bridged were 0.2, 0.4, and 0.25 mm for PC, PA6, and reinforced polyamide 6, respectively. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

18.
Cutting test specimens from molded plaques is commonly used in mechanical testing. The mechanical properties of these cut specimens may be affected by cutting process as it could introduce extrinsic flaws and thermal effects on cut edge surfaces. The objective of this experimental research is to determine how band saw cutting affects the flexural and impact strengths of 33% short glass fiber (GF) reinforced polyamide 66 (PA66) and unreinforced PA66. The specimens for the flexural and impact tests were obtained by cutting molded plaques using different blade types, blade speeds, feed rates, and levels of polishing. Results were compared with those from uncut specimens. Surface morphologies of the specimens' cut edges (photographs and roughness) were assessed using Scanning Electron Microscopy and PRK Perthometer, respectively. The results indicated that higher flexural and impact strengths of cut specimens of 33% GF reinforced PA66 were achieved with high blade speed, low work piece feed rate and using a high number of teeth per unit length. For unreinforced PA66, higher impact strengths were achieved at low blade speeds and work piece feed rates.  相似文献   

19.
In vibration welding of thermoplastics, frictional heat generated by vibrating two parts under pressure, along their common interface, is used to effect welds. In the normal, well-understood mode, the vibratory motion is along the weld seam, which is at right angles to the thickness direction for straight boundaries. But in many applications, such as in the welding of closed seams of box-like parts, this vibratory motion occurs in the part-thickness direction, so that a portion of the molten layer along the seam is exposed to the ambient air during each vibratory cycle. The resulting reduction in temperature can affect weld quality. The process phenomenology and the weld strengths of such cross-thickness vibration-welded butt joints are investigated for four neat resins. Weld amplitudes and weld pressures are shown to affect the strengths of 120-Hz welds differently. It is shown that strengths on the order of the strengths of the neat resins can be achieved in 250-Hz butt welds.  相似文献   

20.
In situ intercalative polycondensation is applied for the preparation of polyamide (PA) n,6–clay nanocomposites, namely poly(ethylene adipamide) (PA 2,6), poly(hexamethylene adipamide) (PA 6,6), and poly(dodecamethylene adipamide) (PA 12,6). For this purpose, two different polymerization routes are considered; a low‐temperature melt polymerization technique and the conventional solution‐melt one. Under the specific experimental conditions, lack of clay exfoliation is detected through XRD measurements, which is proved irreversible even when twin‐screw extrusion is attempted as an additional step. The resulting PA n,6–clay structures are found dependent on the diamine moiety length; more specifically, an intrinsic interaction between the polyamide monomer and the organoclay surfactant is indicated. An ion exchange occurs between the two competitive species, that is, diamine and surfactant cations, leading to flocculated clay structures. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号