首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High temperature mechanical behaviour of mullite has been studied. Our study include tensile, flexural and compressive creep behaviour and fracture up to 1400 °C. The results obtained in creep are analysed and compared with previous work in the literature. Two regions with different behaviour can be distinguished. The creep rates in bending, tension and compression are very similar in the first region at low stresses and temperatures. It is shown that in this region creep takes place by accommodated grain boundary sliding assisted by diffusion. At higher stresses slow crack growth from defects present in the sample occurs. The stress at which this transition in the deformation mechanism happens is dependent on several factors, the loading system during testing, the grain size, the amount and distribution of glassy phase and the environment. It is claimed the existence of a network of mullite–mullite grain boundaries free of glassy phase associated to the low surface energy of [001] planes. The diffusion rate through these boundaries controls the creep rate, and explains the high creep resistance of mullite. The results presented in this work lead to the conclusion that the mechanism controlling high temperature deformation resistance of mullite materials in a wide range of stress–temperature working conditions is independent of the glassy phase content. Slow crack growth limit the use of mullite at high stresses and temperatures.  相似文献   

2.
Creep tests were carried out on epoxy resin specimens at room temperature and at different high stress levels under tension, compression, and flexure. Compared with the behavior at constant strain rate (CSR) reported in Part I of this work, creep strain–time curves revealed a distinct delayed yielding region of constant minimum rate (secondary creep) followed by a post-yielding region of increasing slope (tertiary creep). In all cases, results indicate linearity between creep stress and log secondary creep rate, which is almost coincident with the corresponding relationship between yield stress and strain rate obtained in subsequent CSR loading cycles with the same specimens. The similarity in behavior under both the creep and CSR modes conforms to Eyring's theory of non-Newtonian viscous flow at high stress levels and low temperature. Theoretical analysis yields reasonable values of the activation volume, which is unaffected by the loading and test modes or by loading history, and could thus be regarded as an intrinsic parameter of the microstructure, inherently related to the viscoplastic process involved. The above considerations indicate a deviatoric stress-biased diffusional mechanism as the predominant factor in the yielding of an amorphous glassy epoxy system.  相似文献   

3.
A methodology for structural analysis simulations is presented that incorporates the distribution of mechanical properties along the geometrical dimensions of injection‐moulded amorphous polymer products. It is based on a previously developed modelling approach, where the thermomechanical history experienced during processing was used to determine the yield stress at the end of an injection‐moulding cycle. Comparison between experimental data and simulation results showed an excellent quantitative agreement, both for short‐term tensile tests as well as long‐term creep experiments over a range of strain rates, applied stresses, and testing temperatures. Changes in mould temperature and component wall thickness, which directly affect the cooling profiles and, hence, the mechanical properties, were well captured by the methodology presented. Furthermore, it turns out that the distribution of the yield stress along a tensile bar is one of the triggers for the onset of the (strong) localization generally observed in experiments. © 2015 Society of Chemical Industry  相似文献   

4.
《Ceramics International》2019,45(16):19829-19844
To ascertain material parameter effects on the stress states is beneficial to comprehend the crack growth behavior and delamination mechanism in thermal barrier coatings (TBCs). In this work, numerical models are established to explore the combined effects of material parameters including creep, plastic deformation, and thermally grown oxide (TGO) growth on the stress states upon temperature cycling. For all layers, thermal-physical properties reliant on temperature are incorporated into the model. The process of bond coat (BC) oxidation, namely TGO growth, is materialized by changing material properties with cycles. Based on the principle of a single variable, the residual stress states are explored using many different material combinations. The results indicate that the tensile stress in the ceramic top coat (TC) decreases with the increase in the TGO lateral strain distribution gradient. Increasing the BC yield strength or decreasing the TGO growth stress can reduce the tensile stress in TC if there is no creep in the model. When BC yield strength is relatively high (≥150 MPa), BC creep will strengthen the TC tensile stress. TGO creep can decrease the tensile stress in TC irrespective of TGO growth stress and BC creep. When TGO creep rate is higher than 10Btgo, an exceedingly small tensile stress can always be achieved. This work could provide significant theory direction for material selection and composition control towards advanced TBCs with prolonged lifetime.  相似文献   

5.
The strength of a commericially available hot isostatically pressed silicon nitride was measured as a function of temperature. To evaluate long-term mechanical reliability of this material, the tensile creep and fatigue behavior was measured at 1150°, 1260°, and 1370°C. The stress and temperature sensitivities of the secondary (or minimum) creep strain rate were used to estimate the stress exponent and activation energy associated with the dominant creep mechanism. The fatigue characteristics were evaluated by allowing individual creep tests to continue until specimen failure. The applicability of the four-point load geometry to the study of strength and creep behavior was also determined by conducting a limited number of flexural creep tests. The tensile fatigue data revealed two distinct failure mechanisms. At 1150°C, failure was controlled by a slow crack growth mechanism. At 1260° and 1370°C, the accumulation of creep damage in the form of grain boundary cavities and cracks dominated the fatigue behavior. In this temperature regime, the fatigue life was controlled by the secondary (or minimum) creep strain rate in accordance with the Monkman–Grant relation.  相似文献   

6.
S.K. Bhateja  E.H. Andrews 《Polymer》1983,24(2):160-166
The tensile creep (and other tensile) properties of ultra-high molecular weight polyethylene (UHMW PE) have been determined before and after electron beam irradiation and compared with similar results on normal molecular weight high-density polyethylene (NMW PE). In both polymers, irradiation increases the tensile modulus and the yield stress whilst reducing creep. The major effects occur over the first 20 MRad irradiation dose, though creep strain continues to diminish with dose in UHMW PE up to 64 MRad. Most of the effects can be attributed to crosslinking in the amorphous phase, though the rise in yield stress seems to require crosslinking in the crystalline phase, and the initial rise in modulus in UHMW PE seems to reflect a rise in crystallinity. Comparison with other polymers shows that the creep behaviour of UHMW PE remains relatively poor, even after irradiation. The improvements obtained may, however, be significant in applications where creep resistance is of secondary importance compared with, say, impact and wear resistance, in which UHMW PE excels.  相似文献   

7.
In-plane tensile stress–strain, tensile creep, and after-creep retained tensile properties of melt-infiltrated SiC–SiC composites reinforced with different fiber types were evaluated with an emphasis on obtaining simple or first-order microstructural design guidelines for these in-plane mechanical properties. Using the minimatrix approach to model stress–strain behavior and the results of this study, three basic general design criteria for stress and strain limits are formulated, namely a design stress limit , a design total strain limit , and an after-creep design retained strength limit . It is shown that these criteria can be useful for designing components for high-temperature applications.  相似文献   

8.
The uniaxial tensile and compressive creep rates of an yttria-containing hot-isostatically-pressed silicon nitride were examined at several temperatures between 1316 and 1399°C and found to have different stress dependencies. Minimum creep rates were always faster in tension than compression for an equal magnitude of stress. An empirical model was formulated which represented the minimum creep rate as a function of temperature for both tensile and compressive stresses. The model also depicted the asymmetric creep deformation using exponential and linear dependence on tensile and compressive stress, respectively. Unlike other models which represent either tensile or compressive creep deformation as a respective function of tensile or compressive stress, the model in the present study predicted creep deformation rate for both tensile and compressive stresses without conditional or a priori knowledge of the sign of stress. A statistical weight function was introduced to improve the correlation of the model’s regressed fit to the experimental data. Post-testing TEM microstructural analysis revealed that differences in the amount of tensile- and compressive-stress-induced cavitation accounted for the creep strain asymmetry between them, and that cavitation initiated in tensile and compressively crept specimens for magnitudes of creep strain in excess of 0·1%.  相似文献   

9.
The behavior of low‐density polyethylene (LDPE) and two blends prepared with polylactide (PLA) was determined by means of a novel video‐controlled testing method under stretching at constant true strain rate, under creep at constant true stress, and under creep at constant nominal stress. Most tests were performed at 23°C and 50°C. In this second part, the experimental data are modeled with the G'Sell‐Jonas phenomenological law expressing the axial true stress versus axial true strain and axial true strain rate. This model describes correctly the various deformation stages: (i) initial viscoelasticity, (ii) plastic yielding, and (iii) strain hardening up to rupture. It shows clearly the reinforcing effect of the PLA particles that increases the yield stress in stretching experiments and slows down the deformation kinetics under creep. It is shown how the local stress/strain behavior is related to the standard force/extension curves. Consequently, it is proposed that tensile tests at constant true strain rates should be systematically preferred to creep tests for the characterization of constitutive relations because they take much less time to be performed. POLYM. ENG. SCI., 2011. © 2010 Society of Plastics Engineers.  相似文献   

10.
Physical aging was studied on particulate -filled glassy network polymers by means of mechanical -dilatational, differential scanning calorimetry (DSC) and density measurements on specimens that were aged at room temperature. The composites aged for 0.5 day fractured in a brittle manner at a constant ultimate stress, which is close to the tensile strength of the unfilled material, regardless of the filler content and the presence of a coupling agent. This type of mechanical behavior is caused by the compressive residual stresses that are present due to curing and differential thermal shrinkage. As aging takes place, the compressive residual stresses are relieved; as a result the ultimate tensile strengths of the composites decrease. The 120 -day -old untreated glass bead containing composites exhibited dilatation and yield in mechanical -dilatational testing. This type of behavior is described as “having no adhesion” between the filler and the matrix. The 120 -day -old composites with coupling agent -treated glass beads fractured at a tensile stress which is equal to 1/1.6 the tensile strength of the unfilled material. These materials did not exhibit dilatation and yield in mechanical -dilatational testing. Density and DSC data indicate densification and enthalpy relaxation upon again and support the hypothesis presented for the observed change in the mechanical -dilatational behavior.  相似文献   

11.
On the basis of known nonlinearity of intermolecular force fields, we discuss the interpretation of PVT (pressure, volume, and temperature) behavior, pressure-temperature superposition for polymers, and the relationship between yield stress and tensile modulus. For PVT behavior of polymers, our theoretical results coincide with the experimental data, and their response to pressure is universal. The maximum theoretical yield strain, ϵy for glassy polymers is 1.08, and this value is beyond the elastic limit for glassy polymers. The previously established empirical relationship between yield stress, σy and tensile modulus, E: σy - 0.028 E, which again, is universal for glassy polymers, is predicted also by our phenomenological model. The theoretically predicted values of yield stress for glassy polymers range from 24 MPa to 84 MPa, coinciding with published experimental results. We discuss how the phenomenological model is helpful in the understanding of nonlinear viscoelasticity of glassy polymers © 1996 John Wiley & Sons, Inc.  相似文献   

12.
The applicability of time–temperature superposition to tensile stress relaxation of ABS plastics has been verified at strains from 0.5 to 5% for temperatures in the range of 10–50°C. Master curves have been compiled to predict the long-term stress relaxation at 23°C. and a stress–strain–reduced time surface has been constructed. A comparison of relaxation times and activation energies has confirmed that a strain increase facilitates stress relaxation up to yield. The decay of relaxation modulus at linear viscoelastic strains was shown to be equivalent to that of tensile creep modulus. By normalizing the master curves to originate at yield stress and then converting them into multiaxial from the strain which gives the best data fit with long-term hydrostatic pipe-burst strength was shown to be at yield or beyond. The ABS yield-strain master curves at 23°C. were shown to match satisfactorily the long-term pipe-rupture data. Activation energies for ABS relaxation have been compared below and above the rigid matrix Tg, to assess the degree of stiffening of the polymer in the solid state.  相似文献   

13.
A modified Eyring rate expression based on an asymmetrical potential energy barrier is used to predict the onset of plastic yield in glassy polymers. Equations for the prediction of plastic yield delay times in creep and yield stresses in constant rate of strain testing are developed and compared to experimental data for samples of polycarbonate and polysulfone with various thermal histories. The two equations accurately fit the experimental results for a suitable choice of parameters. Parameters from the creep data can be used to predict yield stress values in constant rate of strain testing. Variation in simple thermal history changes the model parameters in a way that is qualitatively accounted for from a physical interpretation of the constants.  相似文献   

14.
李志刚  李刚  贾慧芳 《中国塑料》2014,28(10):65-69
以对聚甲基丙烯酸甲酯(PMMA)为膜外装饰贴膜材料,对其进行不同温度和不同拉伸速度的高温单向拉伸实验,得到相应条件下PMMA的真实应力真实应变曲线,分别计算出不同温度和不同应变速率的DSGZ本构模型系数,将DSGZ模型的理论预测曲线与其拉伸实验数据曲线进行对比分析。结果表明,在同一温度下,随着应变速率的增大,其真实应力、拉伸比和屈服强度也相应地增大;在同一应变速率下,随着温度的逐渐升高,PMMA的应变软化和屈服现象随之减弱直至消失,其真实应力也明显减小;DSGZ模型的预测曲线与其实验数据曲线基本一致,DSGZ能够较真实地反映PMMA的力学性能。  相似文献   

15.
Uniaxial tension tests to the yield point were performed on poly(chlorotrifluoroethylene) (PCTFE) and poly(vinylidene fluoride) (PVF2) from room temperature to near the melting point at a strain rate of 2 min?1. At room temperature and at least two elevated temperatures, measurements were also made at strain rates from 0.02 to 8 min?1. The properties of these polymers were found to be similar to those of other semicrystalline polymers. In the absence of other transitions, yield energy was found to be a linear function of temperature extrapolating to zero near the melting temperature. The ratio of thermal to mechanical energy to produce yielding is smaller than for glassy polymers. Yield stress is a linear function of log strain rate. The ratio of yield stress to (initial) Young's modulus is about 0.03 at room temperature for both polymers. Yield stress is a linear function of unstrained volume. Yield strain, elastic, and plastic strain all initially increase with temperature, but PCTFE shows a decrease with temperature starting at about 100°C, thus behaving like a glassy amorphous polymer in this region.  相似文献   

16.
S. Shi  G. Chen  X. Chen 《Fuel Cells》2015,15(3):472-478
In this study, the effects of the combination and interaction of thermal and mechanical loading on mechanical behaviors of proton exchange membranes (PEMs) under immersed condition were investigated. Experiments under two kinds of loading path were performed: the quasi‐simultaneous loading path where mechanical loads and temperature occurred simultaneously and the rectangular loading path where thermal and mechanical loads were inserted in turn. The quasi‐simultaneous loading path is composed of in‐phase, 90° and 180° out‐of‐phase loading paths. Comparison between in‐phase and 180° out‐of‐phase loading paths showed that strain accumulation under in‐phase loading path mainly resulted from creep strain while that under 180° out‐of‐phase loading path were mostly induced by cyclic stress. Accumulation of strain was comprised of tensile strain and creep strain, and these two strain components showed different evolution trends with thermo‐mechanical cycles. In addition, the modulus of the membrane was history‐dependent as indicated from results of rectangular loading path. Through comparing creep strain with strain energy density which is an indicator of damage in the membrane, we came to the conclusion that creep strain contributed to the damage of the membrane in the first three cycles.  相似文献   

17.
HTPB推进剂的低温力学性能   总被引:3,自引:0,他引:3  
通过低温和低温恢复常温单轴拉伸试验,考察了低温条件下HTPB推进剂力学性能的变化情况,用SEM扫描电镜观察了推进剂拉伸断面形貌,分析了所得HTPB推进剂的拉伸应力-应变曲线和力学性能特性。结果表明,在低温拉伸条件下,HTPB推进剂主要表现为基体撕裂和颗粒脆断,而在低温恢复常温拉伸条件下,主要以"脱湿"破坏为主。推进剂的低温拉伸曲线具有明显的屈服现象发生,说明推进剂的屈服现象与低温有关。推进剂在低温和低温恢复常温条件下的最大抗拉强度、弹性模量和延伸率等力学性能呈现出不同的变化规律。  相似文献   

18.
The grain-boundary resistivity of tetragonal zirconia polycrystals, which had undergone creep with different applied compressive loads and at different temperatures, has been measured with impedance spectroscopy. A stress exponent of unity was determined from strain rate versus stress data. The grain-boundary resistivity decreased significantly with increasing stress at a constant creep temperature indicating squeezing out of the glassy phase from interfaces between grains. This, however, had no effect on the activation energy for the grain-boundary resistivity.  相似文献   

19.
The performance and expected lifetime of piezoelectric ceramic components are ultimately defined by bulk material fatigue processes. In this work, strain accumulation of a ferroelectric/ferroelastic ceramic lead zirconate titanate is characterized under mechanical cycling using four-point bend bar geometry. Strain accumulation occurs at a higher rate than in creep alone, indicating that the processes are fatigue related, and it is confirmed by X-ray diffraction that the accumulated strain is contributed under both cyclic tensile and compressive stress by domain switching. The relative ranking of measured mechanical strains is nearly the same as the theoretical saturated domain-switching strains.  相似文献   

20.
Paper is a networked structure of randomly bonded fibers. These fibers are composed of naturally occurring polymeric materials (cellulose, hemicelluloses, and lignin). Polymeric materials such as these exhibit viscoelastic deformation, and as a result, creep under an applied stress. A rheological model has been developed to predict the tensile creep behavior of paper under a uni‐axial stress. Specifically, the focus of this model was to predict creep strain using only stress, time, and efficiency factor (effectiveness of bonding). This rheological model offers insight into creep behavior (drawing from molecular creep mechanisms) and separates total strain from creep into initial elastic, primary creep, and secondary creep components. Interfiber bonding is taken into account through the use of an efficiency factor which represents how effectively bonding is distributing load throughout the fiber network of the paper. As a result, this model makes it possible to predict the creep behavior of paper over a range of bonding levels, induced by mechanical changes in bonded area or chemical modification of specific bond strength, using creep data from paper at any single level of bonding. This utility is retained as long as the fibers and the orientation of the fibers are not changed. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号