首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary: Polycarbonate (PC)/high density polyethylene (HDPE) in situ microfibrillar blends were fabricated by a slit die extrusion, hot stretching, and quenching process. Despite PC and HDPE having a high viscosity ratio, which is usually disadvantageous to fibrillation, the morphological observation indicated that the blends had well‐defined PC microfibrils. The size and amount of the PC fibrils were nonuniform through the thickness of the extrudate, and were also affected by the PC concentration and hot stretch ratio. There were coarse and dense fibrils in the core zone, while these fibrils became finer and reduced in number toward the surface. The melt flow rate (MFR) of the PC/HDPE microfibrillar blend decreased with the increase of PC concentration, but increased with the larger hot stretching rate (or hot stretching ratio, HSR). Besides, it was found that the fibrillar blend had better flowability than the common blend with spherical particles at the same PC concentration. Temperature was also an important factor influencing the MFR due to the temperature dependence of PC and HDPE viscosity, and the PC phase morphology. The PC microfibrils could not be preserved beyond 230 °C and transformed into spherical particles. The rheological behaviors at various shear rates were studied by capillary rheometer. The orientation of PC fibrils and HDPE molecules with higher shear rate led to a decrease in the viscosity of microfibrillar blend. The data obtained in this study can help construct the technical foundation for recycling and utilization of PC and HDPE waste by manufacture of microfibrillar blends in future work.

SEM micrograph of the PC/HDPE microfibrillar blend.  相似文献   


2.
本文研究刚性聚合物(PS、PMMA)对CaCO_2填充的PVC/CPE共混体力学性能和流变性能的影响。结果表明,刚性聚合物的填入提高了共混体的冲击强度,其中,对PVC/CPE/CaCO_3=100/15/10体系的增韧效果较好。PMMA使共混体的拉伸强度有所提高而PS使共混体拉伸强度下降。流变性的测定显示,Ca-CO_2使共混体的表观粘度和粘流活化能增加,牛顿的流动性增强,而在PVC/CPE/CaCO_3共混体中加入4.5份PS能明显降低共混体的表观粘度和粘流活化能,牛顿的流动性降低,但仍有良好的挤出物外观和较低的挤出膨胀率。  相似文献   

3.
In this article, we discuss the effect of a compatibilizer for binary blends on the properties of ternary blends composed of high‐density polyethylene (HDPE), polypropylene (PP), or polystyrene (PS) and poly(vinyl chloride) (PVC) virgin polymers with a simulated waste plastics fraction. Chlorinated polyethylene (CPE), ethylene–propylene rubber (EPR), and their 1/1 (w/w) mixture were tested as compatibilizers for the HDPE/PP/PVC ternary blend. CPE, styrene‐ethylene‐propylene block copolymer (SEP), or their 1/1 (w/w) mixture were tested as compatibilizers for the HDPE/PS/PVC ternary blend. The composition of the ternary blends were fixed at 8/1/1 by weight ratio. The amount of the compatibilizer was 3 phr. Rheological, mechanical, and thermal properties were measured. For the 8/1/1 HDPE/PP/PVC ternary blends, the tensile strength was slightly decreased, but the impact strength was significantly increased by adding EPR, CPE, or their mixture. EPR exhibited the most significant impact modification effect for the ternary blends. In a similar way, for 8/1/1 HDPE/PS/PVC ternary blends, on adding SEP, CPE, or their mixture, the tensile strength was slightly decreased, but the impact strength was noticeably increased. It was found that the SEP worked much better as an impact modifier for the ternary blends than CPE or the SEP/CPE mixture did. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1048–1053, 2000  相似文献   

4.
The rheological behaviors of in situ microfibrillar blends, including a typical semicrystalline/semicrystalline (polyethylene terephthalate (PET)/high‐density polyethylene (HDPE)) and a typical amorphous/semicrystalline (polycarbonate (PC)/HDPE) polymer blend were investigated in this study. PET and PC microfibrils exhibit different influences on the rheological behaviors of microfibrillar blends. The viscosity of the microfibrillar blends increases with increased PET and PC concentrations. Surprisingly, the length/diameter ratio of the microfibrils as a result of the hot stretch ratio (HSR) has an opposite influence on the rheological behavior of the two microfibrillar blends. The stretched PET/HDPE blend exhibits higher viscosity than the unstretched counterpart, while the stretched PC/HDPE blend exhibits lower viscosity than the unstretched blend. The data obtained in this study will be helpful for constructing a technical foundation for the recycling and utilization of PET, PC, and HDPE waste mixtures by manufacturing microfibrillar blends in the future. POLYM. ENG. SCI., 45:1231–1238, 2005. © 2005 Society of Plastics Engineers  相似文献   

5.
The melt rheological behavior of high‐density polyethylene (HDPE)/ethylene vinyl acetate (EVA) blends has been examined with reference to the effect of blend ratio, shear stress, and temperature. The HDPE/EVA blends exhibit pseudoplastic behavior, and the observed rheological behavior of the blends was correlated with the extrudate morphology. The experimental values of the viscosity were compared with the theoretical models. The effect of maleic‐ and phenolic‐modified PE compatibilizers on the viscosity of H70 blend was analyzed and found that compatibilization did not significantly increase the viscosity. The effect of dynamic vulcanization and temperature on the viscosity was also analyzed. The activation energy of the system decreased with increase in EVA content in the system. The phase continuity and phase inversion points of the blends were theoretically predicted and compared with the experimental values. The melt flow index (MFI) values of the blends were also determined and found that the MFI values decreased with increase in EVA content in the system. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers  相似文献   

6.
The effects of ultrasonic oscillations on the rheological and viscoelastic properties and morphology of high‐density polyethylene (HDPE)/Illite (70/30) composites were studied. The experimental results showed that the die pressure and apparent viscosity of the HDPE/Illite (70/30) composites were reduced greatly, and so the mass‐flow rate significantly increased in the presence of ultrasonic oscillations during the extrusion. Scanning electron microscopy and linear viscoelasticity tests showed that ultrasonic oscillations improved the dispersion of the Illite particles into the HDPE matrix. The aggregation of the Illite particles disappeared on the fractured surfaces of HDPE/Illite (70/30) composites extruded in the presence of ultrasonic oscillations, and this indicated that ultrasonic oscillations promoted the homogeneous dispersion of Illite particles into the HDPE matrix. Ultrasonic oscillations caused the permanent reduction of the dynamic viscosity and zero‐shear viscosity of HDPE/Illite (70/30) composites. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 379–384, 2005  相似文献   

7.
硬质高聚合度PVC的改性   总被引:2,自引:1,他引:1  
以硬质高聚合度PVC为对象,采用DOP、CPE或SAN进行增韧改性,研究了液体丁腈、ACR及内、外润滑剂对加工流变性能的影响,结果表明,CPE是高聚合度PVC的优良增韧改性剂,对拉伸强度影响很小,SAN对PVC/CPE=100/10体系起到既增韧又增强效果,用量在3份以下,LNBR可降低熔体的表观粘度、缩短塑化时间,降低能耗,改善流变性,ACR-2可明显改善熔体强度,促进熔融塑化,在高速剪切下,表面平整光滑,从力学性能、混炼状态、熔体流动和挤出物外观,选择ESO、丁二烯、TRO16为润滑剂。硬质料的挤出性能及外观接近进口料水平。  相似文献   

8.
This work aimed to evaluate the effect of high-density polyethylene (HDPE) content and of shear rate on the die swell and flow instability of linear low-density polyethylene (LLDPE)/HDPE blends. The results showed that the die swell of the LLDPE/HDPE blends increased with the increase in the shear rate. At high shear rates, the increase in the HDPE content led to an increase in the die swell of LLDPE/HDPE blends. The surface morphology analysis of the extrudates by optical and scanning electron microscopy revealed the presence of sharkskin and stick–slip flow instabilities in LLDPE and LLDPE/HDPE blends at the shear rates investigated. These instabilities were attenuated with the addition of HDPE and almost disappeared in the LLDPE/HDPE blend containing 50 wt% of HDPE.  相似文献   

9.
Poly(vinyl chloride)/chlorinated polyethylene (PVC/CPE)/methylacryloylpropyl‐containing polyhedral oligomeric silsesquioxane (MAP–POSS) nanocomposites are prepared. The plastic behavior and dynamic rheological behavior of PVC/CPE/MAP–POSS are investigated. The influences of composition on dynamic storage modulus G′, loss modulus G″, and complex viscosity η* of PVC/CPE/MAP–POSS melts are discussed. The dynamic mechanical properties, mechanical properties, and morphology are determined. The results show that both plastic time and balance torque of the nanocomposites decrease, but the G′, G″, and η* all increase with increasing MAP–POSS content. The maximum value of the dynamic mechanical loss tan δ decreases and elasticity increases when MAP–POSS is added. The impact strength of the nanocomposites increases with increasing MAP–POSS content and has the best value at 10% content of MAP–POSS, which is 5.38 kJ/m2 higher than that of the blend without MAP–POSS. The MAP–POSS can be used as an efficient process aid and impact aid for the PVC/CPE blend. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

10.
This article deals with the influence of temperature on the rheological behavior of lithium lubricating greases modified with three different types of recycled polymers, high‐density polyethylene (HDPE), low‐density polyethylene, and polypropylene (PP), all deriving from waste plastic recycling plants. Grease formulations containing diverse polymers were manufactured and rheologically characterized. Small‐amplitude oscillatory shear and viscous flow measurements over a temperature range of 25–175°C were carried out. The experimental results obtained suggest that a blend of HDPE and PP could be considered a suitable potential viscosity modifier for lithium lubricating greases in a wide range of in‐service temperature. Thus, the lubricating greases studied modified by HDPE or PP show quite promising results at low or high temperature, respectively. In addition, thermomechanical reversibility has been studied by applying different combined stress–temperature protocols. Lubricating greases containing any of the recycled polymers studied show a significant irreversible structural breakdown when the sample is submitted to temperatures and stresses higher than 75°C and 200 Pa, respectively. Regarding lubricating grease viscous flow behavior, a minimum in the shear stress versus shear rate plots appeared at temperatures above 50°C, more pronounced as temperature increased, resulting from material flow instabilities. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers.  相似文献   

11.
Phase dispersion and coalescence in low‐density polyethylene (LDPE)/polyvinyl chloride (PVC) (70/30) blends influenced by compatibilizer and phase dispersant was studied. It was found that the morphology evolution of blends is sensitive to not only processing conditions (shear strength and mixing time) but also the added compatibilizer or phase dispersant. In our conditions, the stable phase morphology of each blend is obtained after mixing 15–25 min. In addition, the dispersed PVC phase in blends is easy to aggregate when the mixing rotor speed changed from high to low for the binary blends. As a compatibilizer, chlorided polyethylene (CPE) or nitrile rubber (NBR) can stabilize the morphology and hinder the coalescence of the dispersed PVC phase when added to the blends. However, the phase dispersant butadiene rubber (BR) or styrene butadiene rubber (SBR) could not stabilize the phase structure, although it could accelerate phase dispersion. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 763–772, 2004  相似文献   

12.
雷彩红 《塑料科技》2007,35(10):50-53
以氯化聚丙烯(CPP)为增容剂,探讨了CPP不同含量下PP/PVC体系的力学性能、相容性、流变性能以及对应的微观结构,并与氯化聚乙烯(CPE)增容剂进行了比较。发现添加5份CPP可明显改善PP和PVC两相界面相容性,与PP/PVC体系相比,拉伸强度提高了61%,无缺口冲击强度提高了100%。此时CPP还起到了一定的增塑作用,共混体系加工性能较好。与CPE相比,含有CPP的共混体系拉伸强度较高。  相似文献   

13.
The proper morphology of the impact modifier in a polymer blend is important for the modifier to function properly. Well-dispersed particles of less than 1.0 micron in size are needed. For chlorinated polyethylene (CPE) in rigid PVC, this morphology is developed during normal extrusion conditions. The CPE coats the unmelted PVC primary particles, creating a network-like structure. Then, since CPE is at a low concentration (<5%), when the PVC melts, phase inversion occurs, giving discrete CPE particles in a continuous matrix of PVC. Further CPE domain breakup then occurs in the blend melt state, resulting in the desired morphology for impact modification.  相似文献   

14.
《国际聚合物材料杂志》2012,61(3-4):149-158
Abstract

Polylauryllactam was used to improve the impact strength of polyvinylchloride (PVC)/chlorinated polyethylene (CPE) blends without sacrificing their tensile properties. The enhancement of the impact strength increased with the increase of the CPE content in the PVC/CPE blends due to the formation of intermolecular hydrogen bonds among PVC, polylauryllactam and CPE macromolecules. A doubled impact strength of the PVC/CPE blend with 20 weight percent of CPE was obtained after the addition of 1.5 phr polylauryllactam. The PVC/CPE blends with polylauryllactam have a better dimensional stability compared with the PVC/CPE blends without the additive, according to their viscoelastic characteristics. Polylauryllactam shortened the processing time to reach a minimum melt viscosity in the processing of the PVC/CPE blends.  相似文献   

15.
采用氯乙烯—丙烯酸丁酯(VC/BA)共混物作为聚氯乙烯(PVC)/高密度聚乙烯(HDPE)共混物的增容剂,通过冲击实验、拉仲实验、动态力学分析,系统地研究了共混体系性能与其结构之间的关系。通过Brabender流变仪测定了VC/BA共混物增容PVC/HDPE共混体系的流变性能。结果表明,VC/BA共混物是PVC/HDPE共混体系的良好增容剂。在一定范围内,VC/BA共混物与HDPE对PVC有协同增韧效应。vC/BA和HDPE的加入改善了PVC的塑化和流变性能  相似文献   

16.
Processing and compatibilization effects on the phase morphology and the tensile behavior of blends of polystyrene and high-density polyethylene (PS/HDPE) were investigated. As predicted by theory, high shear rates encountered during extrusion blending led to efficient minor phase emulsification in immiscible PS/HDPE blends for which the viscosity ratio approaches unity. Consequently, the emulsifying effect of a styrene/ethylene-butylene/styrene (SEBS) compatibilizer was found to be negligible. In the subsequent molding process, disintegration, shape relaxation and coarsening of the minor phase domains were found to be responsible for the morphological evolution. In the compression molding process, morphological observations showed that the rate of minor phase coarsening followed the predictions of the Ostwald ripening theory, in agreement with the rheological analysis. In the injection molding process, minor phase coarsening was attributed to shear coalescence. Tensile tests performed on compression molded and injection molded blends showed that the mechanical behavior of PS/HDPE blends depend strongly upon the matrix orientation as well as the dispersed phase morphology and orientation. In both postforming operations, compatibilization effects on the morphological stability and the tensile behavior of PS/HDPE blends were found to be dependent upon the composition and the rheological behavior of the blend. Evidence of adhesion between the PS and HDPE phases was observed in the presence of SEBS in HDPE-rich blends.  相似文献   

17.
Two high density polyethylene (HDPE) resins–samples 801 and 802–both nominally the same material, as they are taken from successive batches of the same commercial grade, are characterized for their molecular structure and rheological properties. Gel permeation chromatography (GPC) and low angle laser light scattering (LALLS) results must be interpreted in combination with rheological data to show the presence of somewhat more high molecular weight material in 802 that in 801. Small amplitude oscillatory shear, steady shear, and capillary shear measurements performed in different laboratories show consistently higher shear viscosity values at low shear rates for sample 802. Extensional viscosity measurements show similar results. The interpretation of rheological data in terms of molecular structure could be complicated by the possible presence of long chain branching (LCB). The zero shear viscosity and discrete relaxation spectrum is estimated for both samples. The small rheological difference between 801 and 802 forms the basic information for understanding their time dependent extrudate swell behavior, as will be described in Part II.  相似文献   

18.
ABS/PVC/CPE共混体系的力学性能   总被引:7,自引:0,他引:7  
研究了填充改性丙烯腈-丁二烯-苯乙烯(ABS)三元共聚物、聚氯乙烯(PVC)和CPE三元共混体系力学性能与结构的关系。结果表明,在ABS/PVC共混体系中加入增容剂氯化聚乙烯(CPE)后,提高了共混体系的相容性和机械力学性能;随着共混体系中CPE用量的增加,ABS/PVC/CPE共混体系的冲击强度、断裂伸长率上升,拉伸强度下降,而弹性模量则出现了极大值。  相似文献   

19.
The present study investigated mixed polyolefin compositions with the major component being a post‐consumer, milk bottle grade high‐density polyethylene (HDPE) for use in large‐scale injection moldings. Both rheological and mechanical properties of the developed blends are benchmarked against those shown by a currently used HDPE injection molding grade, in order to find a potential composition for its replacement. Possibility of such replacement via modification of recycled high‐density polyethylene (reHDPE) by low‐density polyethylene (LDPE) and linear‐low‐density polyethylene (LLDPE) is discussed. Overall, mechanical and rheological data showed that LDPE is a better modifier for reHDPE than LLDPE. Mechanical properties of reHDPE/LLDPE blends were lower than additive, thus demonstrating the lack of compatibility between the blend components in the solid state. Mechanical properties of reHDPE/LDPE blends were either equal to or higher than calculated from linear additivity. Capillary rheological measurements showed that values of apparent viscosity for LLDPE blends were very similar to those of the more viscous parent in the blend, whereas apparent viscosities of reHDPE/LDPE blends depended neither on concentration nor on type (viscosity) of LDPE. Further rheological and thermal studies on reHDPE/LDPE blends indicated that the blend constituents were partially miscible in the melt and cocrystallized in the solid state.  相似文献   

20.
The aim of this work is to study the valorization of regenerated low density polyethylene (rLDPE) by blending with PVC in the presence of chlorinated polyethylene (CPE) as compatibilizer. For this purpose, four rLDPE samples coming from neat or dirty wastes were used. They were obtained after milling, washing, and extrusion in a conventional recycling plant. They were first characterized in terms of physicochemical (density, melt flow index, water absorption, and level of oxidation by Fourier transform infrared spectroscopy) and mechanical (tensile and shore D hardness) properties. The effect of the ratio of PVC on these physical and mechanical properties was then investigated. These binary blends exhibited lower properties than those of the separated polymers. The addition of CPE to the binary blend with weight proportion of 50/50 leads to a substantial improvement of the considered properties which is due to a better interfacial adhesion between rLDPE and PVC as evidenced by the analysis of the morphology of the blends by scanning electron microscopy. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号