首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of weirs on the distribution of freshwater mussels was investigated in the Hawkesbury‐Nepean River, Australia. Distribution of species and densities of size classes were strongly correlated with catchment level factors (e.g. location around a major impoundment, stream order). At catchment scale, weir height, presence of a fish barrier, fish ladder type and position above or below small weirs did not influence the presence/absence of mussel populations. Lower mussel densities in the upper catchment may therefore reflect inhibition of host fish migration. Where present, weir height and geomorphic reach type were linked to differences in densities among species. Geomorphic reach‐based differences were reflected by the Hyridella species, but not Velesunio ambiguus. When population structure was described by size class distribution, there were significant differences between densities of small and medium mussels from weirs above, compared to weirs below, a major impoundment, but not for large mussels. Upstream populations may therefore be functionally extinct. Distribution of mussel size classes differed among geomorphic reach types with highest densities for each class found in the least human‐impacted reaches. Small mussels were almost invariably found below the major impoundment, most frequently below weirs. Distribution patterns were inconsistent across species, suggesting habitat preference. V. ambiguus and Hyridella australis were most abundant in shale reaches, where assemblages were influenced by fish ladder type. Hyridella depressa and H. australis dominated in sandstone gorges and straights with assemblage density related to weir height. In upper catchment sandstone reaches, mussel assemblages comprising predominantly V. ambiguus were influenced by fish ladder type and weir height. While multiple factors defined localized distribution, large impoundments were linked with reduced population densities. The probable mechanism is the restriction of host fish movement and resulting lack of recruitment. In the Hawkesbury‐Nepean River, smaller weirs also seriously impacted recruitment. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
The effects of flow releases (daily during spring and four times weekly during summer) from a small impoundment on macroinvertebrate assemblages in the lower Indian River and upper Hudson River of northern New York were assessed during the summers of 2005 and 2006. Community indices, feeding guilds, dominant species and Bray–Curtis similarities at three sites on the Indian River, below a regulated impoundment, were compared with those at four control sites on the Cedar River, below a run‐of‐the‐river impoundment of comparable size. The same indices at four less‐likely affected sites on the Hudson River, below the mouth of the Indian River, were compared with those at an upstream control site on the Hudson River. Results show that the function and apparent health of macroinvertebrate communities were generally unaffected by atypical flow regimes and/or altered water quality at study reaches downstream from both dams in the Indian, Cedar and Hudson Rivers. The lentic nature of releases from both impoundments, however, produced significant changes in the structure of assemblages at Indian and Cedar River sites immediately downstream from both dams, moderate effects at two Indian River sites 2.4 and 4.0 km downstream from its dam, little or no effect at three Cedar River sites 7.2–34.2 km downstream from its dam, and no effect at any Hudson River site. Bray–Curtis similarities indicate that assemblages did not differ significantly among sites within similar impact categories. The paucity of scrapers at all Indian River sites, and the predominance of filter‐feeding Simulium gouldingi and Pisidium compressum immediately below Abanakee dam, show that only minor differences in dominant species and trophic structure of macroinvertebrate communities occurred at affected sites in the Indian River compared to the Cedar River. Thus, flow releases had only a small, localized effect on macroinvertebrate communities in the Indian River. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Diatom assemblages in surface sediment samples in depth profiles from Lake Ontario and from East Lake, a shoreline lake, were analyzed for the purpose of describing the relationship between species distribution and water depth. At both sites species composition varied markedly with sample depth. In East Lake a multiple regression of four habitat groups: benthic, epiphytic, tychoplanktonic, and euplanktonic, against water depth (30 cm–8 m) produced a relationship with a standard error (SE) of 1.5 m. An analysis of the ratio of euplanktonic diatoms to periphytic diatoms over a transect from 3 m to 150 m in Lake Ontario produced a multiple regression with an SE of 11.8 m. In another approach, water depth optima for 91 diatom taxa were developed using a weighted averaging (WA) technique. A good correlation (r2 > 0.9) was found between measured and inferred water depth over the range 3 m to 30 m using a unimodal WA regression model. The transfer functions offer the possibility of inferring Holocene water level changes in Lake Ontario from fossil diatom assemblages in sediment cores.  相似文献   

4.
Frogs are widespread through inland rivers and floodplains and are an important component of floodplain food chains. Despite this, studies of frog communities in inland river systems are limited and the impacts of river regulation on frog communities have received very little attention. Surveys for frogs, tadpoles and egg masses along with assessment of vegetation, hydrology and water chemistry were conducted along 10 km reaches of three creek systems in the Lachlan River catchment, a major regulated river in Australia's Murray–Darling Basin. A total of 23 sample sites were surveyed at locations above and below in‐stream weirs as well as adjacent floodplain depressions. The hydrological regimes of sample sites were classified according to the length of time that they were known to hold water (water permanence). The sample sites fell into two distinct categories, 14 were classified as permanent and occurred upstream of weirs while nine were classified as temporary and were located downstream of weirs and in depressions adjacent to the weir pool. Permanent sample sites had a significantly higher percentage of dead standing timber and were deeper with less aquatic vegetation cover than temporary sample sites. Seven frog species were identified; there were no significant differences in species richness between permanent and the temporary waterbodies but the composition of frog assemblages differed significantly between them. This suggests that alteration to the hydrology of inland creek systems can lead to changes in the distribution frog species, with some becoming more common due to increases in the availably of permanent waterbodies while others decline due to reductions in the availability of seasonally flooded waterbodies. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
The study examines the relationship between floodplain aquatic macroinvertebrates and sector-scale parameters such as geomorphology and history of regulation. The assemblages of six groups of invertebrates (Molluscs, Crustaceans, Ephemeroptera, Odonata, Trichoptera, and Coleoptera) were compared in various types of former channels from two contrasting but adjacent floodplain sectors: (1) the Jons sector of the Rhǒne River where successive meandering and braiding phases has left diversified fluvial forms in the landscape but where the main river is now embanked, and (2) the unregulated Ain River sector where the river is still actively meandering, although this process is being slowed by incision. The results demonstrate little difference in faunal composition between the two sectors but a significant difference in faunal structure. In the Rhǒne floodplain, there was a clear distinction between the faunal assemblages together with a high taxa richness at the scale of the sector (dominance of the beta diversity). In the Ain floodplain, the faunal assemblages were overlapping and the taxa richness was high at the sample scale (alpha diversity). Sector-scale spatial patterns of the faunal assemblages along former channels were also distinct: between-channel heterogeneity dominated in the Rhǒne, whereas within-channel heterogeneity dominated on the Ain. These results stress the influence of geomorphological and historical determinants on the floodplain communities and, conversely, the relevance of macroinvertebrate assemblages for the assessment, at the landscape scale, of aquatic systems within the floodplains.  相似文献   

6.
The aim of this study was to identify whether environmental flows released into two lowland rivers (the Glenelg and Wimmera Rivers, western Victoria, Australia) during the spring to autumn period had successfully ameliorated the negative effects of multiple human impacts. Macroinvertebrates and a range of physico‐chemical variables were sampled from three reaches in each river. Both rivers were sampled during three environmental release seasons with average‐sized releases (1997–1998, 1998–1999 and 2001–2002) and two drought seasons with limited releases (1999–2000 and 2000–2001). The effects of releasing average‐sized environmental flows on macroinvertebrates and physico‐chemical variables were assessed by comparison with data from the two drought seasons. For the Glenelg River, data from a reference season prior to the release of environmental flows (1995–1996) was also compared to data from the five environmental flow seasons. Multivariate analyses revealed four pieces of evidence indicating that the release of environmental flows effectively slowed the process of environmental degradation in the Glenelg River but not in the Wimmera River: (1) the magnitude of the river discharge was dependent on the size of environmental flow releases; (2) in the Wimmera River, water quality deteriorated markedly during the two drought seasons and correlated strongly with macroinvertebrate assemblage structure, but this was not observed in the Glenelg River; (3) the taxonomic composition of the macroinvertebrate assemblages among contrasting flow release seasons reflected the severe deterioration in water quality of the Wimmera River; (4) despite two drought seasons with minimal environmental flow releases, the macroinvertebrate assemblage in the Glenelg River did not differ from the average‐release seasons, nor did it return to a pre‐environmental flows condition. Therefore, it appears that environmental flow releases did sustain the macroinvertebrate assemblage and maintain reasonable water quality in the Glenelg River. However, in the Wimmera River, release volumes were too small to maintain low salinities and were associated with marked changes in the macroinvertebrate assemblage. Therefore, there are multiple lines of evidence that environmental flow releases of sufficient magnitude may slow the process of degradation in a regulated lowland river. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
The River Murray, Australia, is a highly regulated river from which almost 80% of mean annual flow is removed for human use, primarily irrigated agriculture. Consequent changes to the pattern and volume of river flow are reflected in floodplain hydrology and, therefore, the wetting/drying patterns of floodplain wetlands. To explore the significance of these changes, macroinvertebrate samples were compared between permanent and temporary wetlands following experimental flooding in a forested floodplain of the River Murray. Weekly samples from two permanent wetlands and four associated temporary sites were used to track changes in macroinvertebrate assemblage composition. Non‐metric multidimensional scaling was used to ordinate the macroinvertebrate data, indicating consistent differences between the biota of permanent and temporary wetlands and between the initial and later assemblages in the temporary sites. There were marked changes over time, but little sign that the permanent and temporary assemblages were becoming more alike over the 25‐week observation period. The apparent heterogeneity of these systems is of particular importance in developing river management plans which are likely to change flooding patterns. Such plans need to maintain a mosaic of wetland habitats if floodplain biodiversity is to be supported. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
Water supply systems are critical infrastructure that provides food and energy security for developed societies. The operation of reservoirs (flow regulation) and water intakes (water diversion) has known negative impacts on aquatic ecosystems; however, quantification of ecological impacts and examination of these two types of flow alteration remain a developing area of research. We investigated the individual and combined impact of flow regulation and water diversion on stream ecosystem integrity, the freshwater macroinvertebrate community, and the population structure of flow‐sensitive insects. For 2 years, we monitored quarterly discharge, physical and chemical stream conditions, and benthic invertebrates of four high‐altitude tropical streams that are part of the water supply system of Quito, Ecuador. Flow regulation caused a loss of the hydrological seasonality of these streams, including a decrease in stream depth and biotic quality. Water diversion caused a decrease in dissolved oxygen and overall ecosystem integrity. Freshwater invertebrate density and richness decreased as a result of water diversion and flow regulation. The combined flow alteration in these streams decreased the density of nymphal stages of the widely distributed mayfly Andesiops peruvianus. Given the societal needs for food and energy security, water management for diversion (e.g., irrigation) and in‐line storage practices (e.g., hydroelectric dams) are anticipated to increase. This research suggests that the negative environmental impacts of flow alteration could be mitigated with discharge releases designed to approximate the natural hydrologic regime of undisturbed streams.  相似文献   

9.
Natural flow regimes are important for sustaining riverine vegetation. The regulation of river flows to provide water for agriculture often results in changes to flow timing. This study assesses the impact of altered seasonal flow patterns on riverine flora. Within temperate Australia, we surveyed the vegetation of five lowland rivers, three of which have large dams that alter their seasonal flow patterns; the other two are unregulated. From four to six sites were selected on each river, and these were classified into three levels of regulation based on the extent to which the timing of their seasonal flow patterns were altered. Sites were surveyed in winter and the following summer. Permanent quadrats were also established at a number of the surveyed sites and resurveyed every 3 months. Of the 267 plant taxa identified, 145 were exotic (non‐native). More exotic taxa and fewer native taxa were associated with increasing level of seasonal flow inversion (regulation). In particular, greater numbers of short‐lived exotic terrestrial taxa and fewer native woody taxa were associated with increasing level of regulation. Some exotic woody species (e.g. willows) were more common in the unregulated rivers and may have life‐history traits favoured by the natural seasonal flow patterns of study area. Multivariate analyses showed that level of regulation had a significant effect on the overall composition of the riverine vegetation. Our results provide support for the hypotheses that flow regulation adversely affects native species diversity and increases the vulnerability of riparian zones to invasion by exotic species; however, these effects are dependent on plant species' life‐history strategies. Our study highlights the importance of natural seasonal flow patterns for sustaining native riverine plant communities. Flow management aimed at maintaining or restoring ecological values should consider seasonal flow patterns. Winter/spring flow peaks may be particularly important for the recruitment of native riverine plants, especially trees and shrubs, and reducing the extent of exotic annuals and grasses. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Defining appropriate environmental flow regimes and criteria for the use of environmental water allocations requires experimental data on the ecological impacts of flow regime change and responses to environmental water allocation. Fish assemblages in one regulated and one unregulated tributary paired in each of two sub‐catchments of the Hunter River, coastal New South Wales, Australia, were sampled monthly between August 2006 and June 2007. It was predicted that altered flow regime due to flow regulation would reduce species richness and abundance of native fish, and assemblage composition would differ between paired regulated and unregulated tributaries. Despite significant changes in richness, abundance and assemblage composition through time, differences between regulated and unregulated tributaries were not consistent. In February 2007, an environmental flow release (‘artificial flood’) of 1400 ML was experimentally released down the regulated tributary of one of the two catchments over 6 days. The flow release resulted in no significant changes in fish species abundances or assemblage composition when compared to nearby unregulated and regulated tributaries. Flow regulation in this region has reduced flow variability and eliminated natural low‐flow periods, although large floods occurred at similar frequencies between regulated–unregulated tributaries prior to and during 2006–2007, resulting in only moderate changes to regulated flow regimes. Barriers to dispersal within catchments also compound the effects of flow regulation, and findings from this study indicate that the location of migratory barriers potentially confounded detection of the effects of flow regime change. Further experimental comparisons of fish assemblages in regulated rivers will refine river‐specific response thresholds to flow regime change and facilitate the sustainable use of water in coastal rivers. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
River regulation can have various effects on the natural flow regime, however the most obvious and perhaps pronounced hydrological effect is the reduction of total water discharge. Whilst there has been an increasing number of studies investigating the impacts of river regulation on lowland rivers, few studies have specifically investigated the effects of water extractions on small upland streams. In this study, we experimentally examined the effects of short‐term, summer water extractions from small, unregulated streams. Five 30 m reaches were experimentally manipulated to divert a proportion of the total stream flow, and another five 30 m reaches were designated as controls, in the Yea River catchment, Victoria, Australia. The percentage of total discharge diverted from each experimental reach varied through time and between creeks (28–97%), with discharge always significantly reduced compared to control locations. All sites were monitored for available habitat, biofilm, water quality and macroinvertebrate diversity and density, fortnightly during February and March 2004. Despite the range of total stream volumes being extracted, the manipulation altered important ecological components of these unregulated creeks, including changes in physical habitat features (reduced stream wetted area and maximum stream depth) and reduced dissolved oxygen concentrations. Biofilm parameters showed a slight increase in diverted reaches, but were not statistically different from the controls. There was no statistical difference in total density of macroinvertebrates or EPT taxa; however, the density of Austrocercella mariannae (Notonemouridae) was significantly reduced in diverted reaches. Macroinvertebrate family level diversity, and the family diversity of grazers and shredders was reduced in diverted reaches. This study demonstrates that there are likely to be significant ecological impacts of extracting water in unregulated creeks. Whilst this study has demonstrated the need to consider environmental water requirements in unregulated streams, further studies are required to inform the debate about the volume, timing and predicted ecological response with improved environmental water. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
Monitoring of the ecological impacts of water abstraction from unregulated streams in the state of New South Wales (NSW), Australia, is challenging because water is abstracted by thousands of geographically dispersed users who pump intermittently according to temporally varying needs and the limitations imposed by licences and access rules. Detailed, quantitative monitoring methods are too costly for widespread routine application because of the size of the state (801 000 km2) and the large number of streams affected by abstraction. We therefore tested the possibility of detecting abstraction impacts on aquatic macroinvertebrates with rapid biological assessment (RBA) methods similar to those that are routinely used for biological monitoring of Australian rivers. We sampled 85 sites on unregulated streams in north‐eastern NSW during a period of prolonged and recurring drought, 54 of which were designated as reference sites with respect to water abstraction because upstream entitlement for abstraction was less than 1% of their mean annual flow (MAF). The remaining, non‐reference sites had an average of 4% of MAF licensed for upstream abstraction (range 1–20%). Sweep and kick samples were collected at each site in two seasons, and invertebrates were picked for 30 min per sample and analysed at genus level. We found a small but statistically significant overall difference in macroinvertebrate assemblages between the reference and non‐reference sites, but the amount of upstream entitlement did not affect the degree to which assemblages at individual sites deviated from site‐specific reference conditions. We attribute the absence of evident impact mainly to the low proportions of streamflow abstracted, but limitations of RBA methods may also be a factor. We recommend a risk‐based approach to future monitoring whereby effort is focussed on those streams where a high proportion of flow is abstracted. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
We comparatively examined the role of littoral and deep water sampling methods in assessing macroinvertebrate assemblages and in characterizing longitudinal changes in assemblage structure along >2,500‐km–long course of the Danube River, Europe. The effectiveness of detecting taxa corresponded well with an inshore–offshore gradient in sampling (i.e., distance from shore). Nevertheless, each method (i.e., littoral multihabitat sampling, kick and sweep sampling, and deep water dredging) contributed to some degree to overall taxa richness and species composition. Sampling in different depth zones characterized different assemblages, and consequently, inshore–offshore position was at least as important determinant of assemblage structure as longitudinal position of sampling sites in the river. Although we found significant congruency in the spatial variability of assemblages among the sampling methods, the relationships were only moderate. Our study on the large Danube River confirms studies from smaller rivers in other geographic regions that littoral monitoring provides higher taxa richness and more responsive changes to longitudinal gradients than deep water samples. Nevertheless, it also shows that sampling in different depth zones provides supplementary information on assemblage structure. Understanding changes in macroinvertebrate assemblages related to differences in sampling method is crucial to improve the bioassessment and environmental management of large rivers.  相似文献   

14.
Littoral habitats in large rivers are influenced to varying degrees by changes in discharge. Irrigation abstractions can increase the amount of habitat that would naturally be dewatered during low flow periods and therefore it is important to have some knowledge of the potential impact this may have on riverine macroinvertebrates. The macroinvertebrate assemblages of common littoral habitats in riffles, pools and runs in two reaches each of the Macquarie and Mersey Rivers, northern Tasmania, Australia were compared from samples collected during the low flow and irrigation season, between December 1991 and April 1992. The area under water of these habitats, riffle substrata, macrophyte beds and coarse woody debris, responded differently to changes in discharge. Within a reach, the same taxonomic groups often dominated the total number of macroinvertebrates for all habitats, but there were differences in the proportions contributed by these taxa to the different habitats. In general, taxa characteristic of slow-flowing or lentic habitats, such as ostracods and amphipods, were dominant in macrophyte beds in pools and runs, whereas taxa such as larval elmid beetles and hydropsychid caddisflies were dominant in riffles. A substantial component of the fauna from each habitat within a reach was unique to that habitat, but there was always a similar number of taxa common to all habitats. Classification and ordination grouped samples from both rivers firstly by habitat and secondly by month and reach. Total density and family richness of invertebrates differed by reach, habitat and month in both rivers, except for richness in the Mersey River where habitat was not significant. Differences in densities and numbers of invertebrate families among habitats were not consistent between reaches for each river. This study has highlighted the differences in macroinvertebrate assemblages of several littoral habitats in two lowland rivers in Tasmania. Differences in taxonomic composition, density and richness among habitats within reaches strongly imply the uniqueness of these habitats in terms of the invertebrate faunas that occupy them. We suggest that if maintenance of biotic diversity is an aim of instream flow management, water allocations that address low flows should place a high priority on the maintenance of a diversity of habitats.  相似文献   

15.
Damming and regulating the flow of rivers is a widespread issue and can have a significant impact on resident biota. The Tongariro River, central North Island, New Zealand, has a flow regime that is regulated by two hydroelectric dams along its length, and it has been suggested that ‘flushing flows’ would assist benthic communities by removing ‘nuisance’ periphyton growth forms that typically occur in autumn. We assessed whether (i) damming has altered periphyton and macroinvertebrate communities downstream of the Rangipo Dam and (ii) whether the release of a flow pulse equivalent to 50 times the baseflow is sufficient to (a) move the substrate in the section of river downstream of this dam and (b) impact benthic periphyton and macroinvertebrate communities. Downstream macroinvertebrate communities were impacted by the presence of the dam, but periphyton was not. No movement of substrate occurred downstream of the dam as a result of the flow release, which was likely because of naturally high embeddedness and armouring of substrate. Periphyton biomass and macroinvertebrate density were not affected by the release indicating that larger releases would be required to have any effect on benthic communities downstream of this dam. This study highlights the importance of considering natural bed structure and sediment dynamics when using flow releases downstream of dams to control periphyton. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Hydropower dams substantially modify lotic ecosystems. Most studies regarding their ecological impacts are based on large dams and provide little information about the far more abundant effects of small hydropower dams. Our aim was to characterize the ecological effects of a small hydropower dam and run‐of‐the‐river reservoir on the structure of benthic macroinvertebrate assemblages in the Pandeiros River located in the neotropical savanna of Brazil. We tested the hypothesis that benthic macroinvertebrate assemblages in sites directly affected by the dam and reservoir would show a different taxonomic structure compared with those in free‐flowing sites. We expected to find sensitive native species associated with the free‐flowing sites, whereas resistant and non‐native invasive taxa were expected in impounded sites. We also explored associations between the presence of native and non‐native invasive taxa to each habitat type. We found that the structure of benthic macroinvertebrate assemblages was significantly different between free‐flowing and impounded sites. Also, we found that the dam and reservoir facilitated colonization of non‐native invasive species (Corbicula fluminea and Melanoides tuberculata) because only in those sites they were found in high abundance, in contrast to the free‐flowing sites. Although the environmental conditions imposed by the impoundment altered the structure of benthic macroinvertebrate assemblages, the effects were limited to sites closest to the dam. Our results highlight the necessity of understanding physical habitat changes caused by the presence and management of run‐of‐the‐river dams and reservoirs.  相似文献   

17.
Two types of modification of the hydrological system are present in the same regulated segment of the Lima River (NW Portugal): (a) a reduced and constant flow from hypolimnetic release; (b) an intense irregular flow (daily and seasonal). Using multivariate techniques it was possible to compare the effects of these two kinds of disturbance on the macroinvertebrate communities. The communities colonizing both sites exhibited a higher variation in composition and diversity when compared to undisturbed sites. However, such variability was even more evident in the first case, in spite of the stability of the environmental conditions. Such temporal replacement of species is linked to the dominance of tolerant taxa with short life cycles. In the regulated segment the poor water quality and the lack of litter input impacted mainly on the shredders group. This work shows the failure of the practice of releasing constant flows as an attempt to mitigate regulation impacts. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
The objective of this paper is to determine the alteration of the taxonomic composition and functional structure of macroinvertebrate community associated with a massive growth of the invasive algae Didymosphenia geminata downstream of a mountain reservoir (Pajares Reservoir, La Rioja, Northern Spain). As the massive growth of the alga disappears a few kilometres downstream of the reservoir associated with the input of nutrients from a nearby village sewage, we may compare the community composition between nine stations in three different conditions: three stations heavily affected by the presence of D. geminata, three further downstream stations without the algal massive growth but affected by river regulation and three control stations (unregulated and without the algae). Results show a significant disturbance of the composition and structure of macroinvertebrate community in sites affected by the stream flow regulation downstream of the dam compared with unregulated streams, but the alterations are more dramatic in the area where the growth of D. geminata is massive because of the total substrate occupation by the algal filaments. Scrapers and others invertebrates living on the coarse substrate are especially affected at such sites. Moreover, an important increase in the relative abundance of chironomids is associated with the algal massive growth, especially in case of Eukiefferiella devonica and Cricotopus spp., reducing the assemblage diversity and leading to the taxonomic and functional homogenization of the community. Changes in the reservoir management (such as releasing the water from surface rather than from the hypolimnion) may be useful to control the massive growth of D. geminata and thus reducing the effects of river regulation on macroinvertebrate assemblage composition. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Climate change is forecast to bring more frequent and intense precipitation to New York which has motivated research into the effects of floods on stream ecosystems. Macroinvertebrate assemblages were sampled at 13 sites in the Mohawk River basin during August 2011, and again in October 2011, following historic floods caused by remnants of Hurricane Irene and Tropical Storm Lee. The annual exceedance probabilities of floods at regional flow‐monitoring sites ranged from 0.5 to 0.001. Data from the first 2 surveys, and from additional surveys done during July and October 2014, were assessed to characterize the severity of flood impacts, effect of seasonality, and recovery. Indices of total taxa richness; Ephemeroptera, Plecoptera, and Trichoptera (EPT) richness; Hilsenhoff's biotic index; per cent model affinity; and nutrient biotic index‐phosphorus were combined to calculate New York State Biological Assessment Profile scores. Analysis of variance tests were used to determine if the Biological Assessment Profile, its component metrics, relative abundance, and diversity differed significantly (p ≤ .05) among the four surveys. Only total taxa richness and Shannon–Wiener diversity increased significantly, and abundance decreased significantly, following the floods. No metrics differed significantly between the July and August 2014 surveys which indicates that the differences denoted between the August and October 2011 surveys were caused by the floods. Changes in taxa richness, EPT richness, and diversity were significantly correlated with flood annual exceedance probabilities. This study increased our understanding of the resistance and resilience of benthic macroinvertebrate communities by showing that their assemblages were relatively impervious to extreme floods across the region.  相似文献   

20.
Cow Green dam is situated in Northern England on the River Tees in a region with high average wind speeds (24 km h?1), low average annual temperatures (circa 5°C) and average rainfall of 1800 mm. The River Tees was impounded by the Cow Green dam in 1970 and early studies revealed significant changes arising from flow regulation. This study compares macroinvertebrate communities in 2004 with those recorded in the first 5 years after impoundment in the Tees and in the unregulated Maize Beck. Nineteen of the 31 common taxa in the regulated sites declined in abundance by a factor of 5 or more. These included Hydra sp., Ancylus fluviatilis, Naididae, Heptageniidae, Leuctridae and Brachycentrus subnubilus. Some taxa, Lymnaea peregra, Ephemerella ignita, Hydroptila sp. increased in numbers, and others Hydropsychidae and Gammarus pulex declined at sites nearest the dam but increased downstream. In Maize Beck there were fewer changes. The changes in faunal communities in the Tees were evident from multivariate analyses where the Tees sites sampled in 2004 were separated from those sampled in the period 1972–1975, as a result of abundance changes in common taxa and the appearance of taxa not previously recorded. Maize Beck in contrast was characterized by few changes in abundance and no new taxa and samples from all years grouped together. The results suggest that the Tees communities have changed since 1975 and are still possibly undergoing change, although without evidence from intervening years this cannot be proved. A narrower range of environmental conditions and increased flow stability have led to a dynamically fragile community (indicated by observed changes in community diversity and abundance) which is very susceptible to perturbations because it has developed in their absence. Periphyton and reservoir plankton play an important role in structuring the faunal composition by creating an environment where biotic interactions are more likely. Increased interaction between components of the faunal community may account for the observed changes since 1975 in the regulated sites in contrast to the situation in the unregulated Maize Beck where there has been little change in faunal community between the original study and the 2004 survey. An unregulated natural flow regime continues to dominate the Maize Beck environment and the variable and unpredictable conditions have resulted in a dynamically robust faunal community. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号