首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 607 毫秒
1.
Rubber–rubber blends are used widely in industry, for example, in tire manufacture. It is often difficult to characterize interfaces in such rubber–rubber blends quantitatively because of the similarity in the chemical structure of the component rubbers. Here, a new method was suggested for the measurement of the weight fraction of the interface in rubber–rubber blends using modulated‐temperature differential scanning calorimetry (M‐TDSC). Quantitative analysis using the differential of the heat capacity, dCp/dT, versus the temperature signal from M‐TDSC allows the weight fraction of the interface to be calculated. As examples, polybutadiene rubber (BR)–natural rubber (NR), BR–styrene‐co‐butadiene rubber (SBR), SBR–NR, and nitrile rubber (NBR)–NR blend systems were analyzed. The interfacial content in these blends was obtained. SBR is partially miscible with BR. The cis‐structure content in BR has an obvious effect on the extent of mixing in the SBR–BR blends. With increasing styrene content in the SBR in the SBR–BR blends, the interface content decreases. NR is partially miscible with both BR and SBR. The NBR used in this research is essentially immiscible with NR. The maximum amount of interface was found to be at the 50:50 blend composition in BR–NR, SBR–BR, and SBR–NR systems. Quantitative analysis of interfaces in these blend systems is reported for the first time. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1791–1798, 2000  相似文献   

2.
Abstract

Elastomeric blends based on SBR and NBR have been prepared, giving emphasis to differences in blend composition. It was observed from dynamic mechanical analysis that the SBR–NBR blends can be compatibilised by addition of 5 pphr dichlorocarbene modified styrene/butadiene rubber. The efficiency of carbon black in uncompatibilised and compatibilised blends was evaluated with reference to their processing characteristics and technological properties and the resistance of the vulcanisates towards thermal and oil aging was analysed. The changes in technological properties have been correlated with variations in crosslink density estimated from stress–strain and swelling behaviour. The swelling studies are also extended to evaluate the reinforcing nature of the filler. The results of the study reveal that compatibilised blends show enhanced mechanical properties in the presence of HAF carbon black in comparison with uncompatibilised samples.  相似文献   

3.
The graft copolymerization of 2‐dimethylamino ethylmethacrylate (DMAEMA) onto ethylene propylene diene mononer rubber (EPDM) was carried out in toluene via solution polymerization technique at 70°C, using dibenzoyl peroxide as initiator. The synthesized EPDM rubber grafted with poly[DMAEMA] (EPDM‐g‐PDMAEMA) was characterized with 1H‐NMR spectroscopy, gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and thermal gravimetric analysis (TGA). The EPDM‐g‐PDMAEMA was incorporated into EPDM/butadiene acrylonitrile rubber (EPDM/NBR) blend with different blend ratios, where the homogeneity of such blends was examined with scanning electron microscopy and DSC. The scanning electron micrographs illustrate improvement of the morphology of EPDM/NBR rubber blends as a result of incorporation of EPDM‐g‐PDMAEMA onto that blend. The DSC trace exhibits one glass transition temperature (Tg) for EPDM/NBR blend containing EPDM‐g‐PDMAEMA, indicating improvement of homogeneity. The physico‐mechanical properties after and before accelerated thermal aging of the homogeneous, and inhomogeneous EPDM/NBR vulcanizates with different blend ratios were investigated. The physico‐mechanical properties of all blend vulcanizates were improved after and before accelerated thermal aging, in presence of EPDM‐g‐PDMAEMA. Of all blend ratios under investigation EPDM/NBR (75/25) blend possesses the best physico‐mechanical properties together with the best (least) swelling (%) in brake fluid. Swelling behavior of the rubber blend vulcanizates in motor oil and toluene was also investigated. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
Because of the structural dissimilarity, natural rubber (NR) and acrylonitrile–butadiene rubber (NBR) are immiscible, and compatibilizers are used during their blending. Neoprene or chloroprene rubber (CR) has a polar chlorine part and a nonpolar hydrocarbon part. Also, it has many advantageous properties, such as oil resistance, toughness, a dynamic flex life, and adhesion capacity. Hence, it is not less scientific to use CR as a compatibilizer in the blending of NBR with NR. Because many fewer studies on the use of neoprene as a compatibilizer in NR–NBR blend preparation are available, efforts were made to prepare 20:80 NR–NBR blends with CR with the aim of studying the effect of poly(ethylene oxide) (PEO)‐coated nano calcium silicate along with nano N‐benzylimine aminothioformamide and stearic acid coated nano zinc oxide in the sulfur vulcanization of the blends. The optimum dosage of the compatibilizer was derived by the determination of the tensile properties, tear resistance, abrasion resistance, compressions set, and swelling values. The tensile strength, tear resistance, and abrasion resistance of the gum vulcanizates of the blend were improved by the compatibilizing action of CR up to 5 parts per hundred parts of rubber (phr). In the case of the filled vulcanizates, the tear resistance, 300% modulus, hardness, and abrasion resistance increased with increasing dosage of nano calcium silicate. The elongation at break percentage decreased as expected when there was an increase in the modulus. Scanning electron microscopy was used to study the phase morphology of the blends. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

5.
Polyglycidylmethacrylate grafted butadiene rubber (PGMA‐g‐BR) was synthesized by a graft solution copolymerization technique. The PGMA content was determined through titration against HBr. The PGMA‐g‐BR was blended with styrene butadiene rubber/butadiene acrylonitrile rubber (SBR/NBR) blends with different blend ratios. The SBR/NBR (50/50) blend was selected to examine the compatibility of such blends. Compatibility was examined using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and viscosity measurements. The scanning electron micrographs illustrate the change of morphology of the SBR/NBR rubber blend as a result of the incorporation of PGMA‐g‐BR onto that blend. The Tgs of SBR and NBR in the blend get closer upon incorporation of PGMA‐g‐BR 10 phr, which indicates improvement in blend homogeneity. The intrinsic viscosity (η) versus blend ratio graph shows a straight‐line relationship, indicating some degree of compatibility. Thermal stability of the compatibilized and uncompatibilized rubber blend vulcanizates was investigated by determination of the physicomechanical properties before and after accelerated thermal aging. Of all the vulcanizates with different blend ratios under investigation, the SBR/NBR (25/75) compatibilized blend possessed the best thermal stability. However, the SBR/NBR (75/25) compatibilized blend possessed the best swelling performance in brake fluid. The effect of various combinations of inorganic fillers on the physicomechanical properties of that blend, before and after accelerated thermal aging, was studied in the presence and absence of PGMA‐g‐BR. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1559–1567, 2006  相似文献   

6.
The effects of dynamic vulcanization and blend ratios on mechanical properties and morphology of thermoplastic elastomeric (TPE) compositions, based on blends of nitrile rubber (NBR) and poly(styrene‐co‐acrylonitrile) (SAN), were studied. The TPE composition prepared by adding a rubber‐curatives masterbatch to softened SAN yields higher mechanical properties than that prepared by adding curatives to the softened plastic–rubber preblend. The blends having a higher rubber–plastic ratio (60 : 40 to 80 : 20) display thermoplastic elastomeric behavior, whereas those having a higher plastic–rubber ratio (50 : 50 to 90 : 10) display the behavior of impact‐resistant plastics. DSC studies revealed that NBR and SAN are thermodynamically immiscible. SEM studies of the thermoplastic elastomeric compositions show that SAN forms the matrix in which fine particles of NBR form the dispersed phase. It was further confirmed by dynamic mechanical thermal analysis. Dynamic vulcanization causes a decrease in the size of dispersed particles and improvement in mechanical properties. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1976–1987, 2003  相似文献   

7.
Polypropylene (PP) and acrylonitrile–butadiene–styrene blends of different composition were prepared using a single‐screw extruder. The binary blend of PP/ABS was observed to be incompatible and shows poor mechanical properties. PP‐g‐2‐hydroxyethyl methacrylate (2‐HEMA) was used as a compatibilizer for the PP/ABS blends. The ternary compatibilized blends of PP/ABS/PP‐g‐2‐HEMA showed improvement in the mechanical properties. Electron micrographs of these blends showed a homogeneous and finer distribution of the dispersed phase. The mechanical performance increased particularly in the PP‐rich blend. The 2.5‐phr (part per hundred of resin) compatibilizer was observed to bring improvement to the properties. The suitability of various existing theoretical models for the predication of the tensile moduli of these blends was examined. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 72–78, 2003  相似文献   

8.
Poly(L ‐lactide) (PLLA) and poly(3‐hydrobutyrate‐co‐3‐hydroxyvalerate) (PHBV) were blended with poly(butadiene‐co‐acrylonitrile) (NBR). Both PLLA/NBR and PHBV/NBR blends exhibited higher tensile properties as the content of acrylonitrile unit (AN) of NBR increased from 22 to 50 wt %. However, two separate glass transition temperatures (Tg) appeared in PLLA/NBR blends irrespective of the content of NBR, revealing that PLLA was incompatible with NBR. In contrast, a single Tg, which shifted along with the blend composition, was observed for PHBV/NBR50 blends. Moreover NBR50 suppressed the crystallization of PHBV, indicating that PHBV was compatible with NBR50. Decrease of both elongation modulus and stress at maximum load was less significant and increase of elongation at break was more pronounced in PHBV/NBR50 blends than in PLLA/NBR50 blends. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3508–3513, 2004  相似文献   

9.
The RTPP/ABS (rubber toughened polypropylene/poly (acrylonitrile‐co‐butadiene‐co‐styrene) blends, both noncompatibilized and compatibilized with polypropylene‐g‐polystyrene, were prepared by melt mixing in a Brabender Plasti‐Corder. As the torque ratio of RTPP and ABS was about 2, phase cocontinuity in the blends was achieved at ABS volume fractions around 0.16, which was evidenced by both microscopic analysis and mechanical testing. A new microscopic and image analysis technique was introduced, whose combination provides two semiquantitative parameters: structure roughness and structure cocontinuity. The latter parameter is closely associated with the predictive scheme based on the equivalent box model and percolation theory, which was used in this study. The predicted mechanical properties were confronted with the experimental data for tensile modulus, yield strength, and tensile impact strength. While the modulus of noncompatibilized blends is reasonably fitted by the model, the compatibilizer accounts for a positive deviation attributed to a strong interaction between the compatibilizer and the matrix. The yield strength of noncompatibilized blends indicates poor interfacial adhesion, which is so enhanced by the compatibilizer that no phase debonding occurs before yielding. Tensile impact strength, in contrast to modulus and yield strength, passes through a deep minimum for both types of blends; two tentative explanations of this detrimental behavior were suggested. POLYM. ENG. SCI., 47:582–592, 2007. © 2007 Society of Plastics Engineers.  相似文献   

10.
This work studied the effects of hydrogenated acrylonitrile‐butadiene rubber (HNBR) and precipitated silica (PSi) loadings in acrylonitrile‐butadiene rubber (NBR) filled with 60 parts per hundred of rubber (phr) of carbon black (CB) for oil‐resistant seal applications in contact with gasohol fuel. The cure characteristics, mechanical properties, and swelling behavior of HNBR/NBR blends reinforced with PSi before and after immersion in ethanol‐based oils (E10, E20, and E85) were then monitored. This work studied the effects of PSi loading in rubber compounds on the mechanical properties of the rubber blends. The results suggested that the scorch time of CB‐filled NBR/HNBR was not affected by HNBR loading, but the cure time, Mooney viscosity, and torque difference increased with HNBR content. The swelling of the blends in E85 oil were relatively low compared with those in E10 and E20 oils. The recommended NBR/HNBR blend ratio for oil‐resistant applications was 50/50. Tensile strength and elongation at break before and after immersion in gasohol oils increased with HNBR loading, and the opposite effect was found for tensile modulus and hardness. PSi filler had no effect on scorch time, but decreased the cure time of the blends. The swelling level of the blends slightly decreased with increasing PSi content. The recommended silica content for optimum reinforcement for black‐filled NBR/HNBR blend at 50/50 was 30 phr. The results in this work suggested that NBR/HNBR blends reinforced with 60 phr of CB and 30 phr of silica could be potentially used for rubber seals in contact with gasohol fuels. J. VINYL ADDIT. TECHNOL., 22:239–246, 2016. © 2014 Society of Plastics Engineers  相似文献   

11.
The use of trans‐polyoctylene rubber (TOR) as a compatibilizer for blends of natural rubber (NR) and acrylonitrile‐butadiene rubber (NBR) was investigated using atomic force microscopy (AFM) and dynamic mechanical analysis (DMA). The NR/NBR blends containing varying proportions of TOR were prepared in an internal mixer. AFM micrographs of NR/NBR blend at 50/50 (w/w) composition showed heterogeneous phase morphology with NR as a matrix and NBR as a dispersed phase. Inclusion of TOR in the NR/NBR blend altered the phase morphology by reducing the size of the NBR phase. DMA of NR/NBR/TOR showed reduction in tan δ peak height of NBR and an increase in storage modulus E′ in the rubbery region for the NR/NBR blends. A comparison of the E′ obtained from experimental data with that from theoretical models was made to deduce the location of TOR in the blend. Based on the fittings of calculated and experimental values of E′, it was inferred that TOR was incorporated into the NR phase at lower proportion as well as at the interfacial region at higher proportion. The Cole–Cole plot illustrated the compatibilizing effect of TOR. Copyright © 2004 Society of Chemical Industry  相似文献   

12.
Thermoplastic vulcanizates (TPVs) based on acrylonitrile–butadiene–styrene (ABS)/nitrile butadiene rubber (NBR) blends were prepared by dynamic vulcanization and then compatibilized by chlorinated polyethylene (CM). The effects of CM compatibilizer on the mechanical properties, Mullins effect, and morphological and dynamic mechanical properties of the TPVs were investigated systematically. Experimental results indicated that CM had an excellent compatibilization effect on the dynamically vulcanized ABS/NBR TPVs. Mullins effect results showed that the compatibilized ABS/NBR TPV had relatively lower internal friction loss than the ABS/NBR TPV, indicating the improvement of elasticity. Morphology studies showed that the fracture surfaces of ABS/CM/NBR TPVs were relatively smoother, indicating the improved elastic reversibility. DMA studies showed that the glass to rubber transition temperatures of ABS and NBR phases were slightly shifted toward each other with the incorporation of CM compatibilizer, which indicates the improvement of the compatibility. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40986.  相似文献   

13.
The influence of trans‐polyoctylene rubber (TOR) on the mechanical properties, glass‐transition behavior, and phase morphology of natural rubber (NR)/acrylonitrile–butadiene rubber (NBR) blends was investigated. With an increased TOR level, hardness, tensile modulus, and resilience increased, whereas tensile strength and elongation at break tremendously decreased. According to differential scanning calorimetry and dynamic mechanical analysis, there were two distinct glass‐transition temperatures for a 50/50 NR/NBR blend, indicating the strongly incompatible nature of the blend. When the TOR level was increased, the glass transition of NBR was strongly suppressed. NBR droplets of a few micrometers were uniformly dispersed in the continuous NR phases in the NR/NBR blends. When TOR was added to a 50/50 NR/NBR blend, TOR tended to be located in the NR phase and in some cases was positioned at the interfaces between the NBR and NR phases. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 125–134, 2002  相似文献   

14.
The stress‐strain behavior of different concentrations of low‐structure high abrasion furnace black (HAF‐LS, N326)‐loaded rubber blend of styrene butadiene rubber and natural rubber (SBR+NR) of equal parts was measured. Moduli of elasticity and the n‐measure of such blends were calculated using different approaches. An anomaly, of modulus of elasticity, found at 50 phr may be attributed to carbon black reinforcement and to an early crystallization of stretched natural rubber (NR) in the blend. These assumptions are confirmed through the measurement of the swelling factor as a function of time of swelling in kerosene.  相似文献   

15.
The ductile–brittle transition temperatures were determined for compatibilized nylon 6/acrylonitrile‐butadiene‐styrene (PA6/ABS) copolymer blends. The compatibilizers used for those blends were methyl methacrylate‐co‐maleic anhydride (MMA‐MAH) and MMA‐co‐glycidyl methacrylate (MMA‐GMA). The ductile–brittle transition temperatures were found to be lower for blends compatibilized through maleate modified acrylic polymers. At room temperature, the PA6/ABS binary blend was essentially brittle whereas the ternary blends with MMA‐MAH compatibilizer were supertough and showed a ductile–brittle transition temperature at ?10°C. The blends compatibilized with maleated copolymer exhibited impact strengths of up to 800 J/m. However, the blends compatibilized with MMA‐GMA showed poor toughness at room temperature and failed in a brittle manner at subambient temperatures. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2643–2647, 2003  相似文献   

16.
《国际聚合物材料杂志》2012,61(14):1130-1146
The present paper investigates the interaction of silica filler in uncompatibilized and compatibilized styrene butadiene rubber/nitrile rubber (SBR/NBR) blends of varying compositions. The use of a dynamic mechanical analyzer as a tool for confirming the compatibility by the addition of dichlorocarbene modified styrene butadiene rubber (DCSBR) in these blends has been described. The addition of silica in uncompatibilized as well as compatibilized blends has been found to be increasing the rheometric-processing characteristics such as maximum viscosity and rate of cure. The magnitude of these values has been found to be higher for compatibilized blends and for 50/50 composition. The optimum cure time has been found to be decreasing with silica loading regardless of the presence of the compatibilizer. The magnitude of optimum cure time has been found to be higher for uncompatibilized system and for the composition with higher SBR content. Enhancement in mechanical properties with the addition of silica has been observed for compatibilized blends, more intensely than uncompatibilized samples. A good correlation between mechanical properties and solvent sorption behavior has also been observed.  相似文献   

17.
Polybutadiene rubber, poly(styrene‐co‐butadiene) rubber, natural rubber, and their blends were investigated to estimate the degree of miscibility of components in the blends. The morphology of a rubber–rubber blend controls its rheological properties and glass transition behavior. Therefore, two different measuring techniques were used: rheological characterization of blends by the rubber process analyzer (RPA) and temperature modulated differential scanning calorimetry (TMDSC). To study the dependence of complex viscosity on blend composition, two commonly used empirical mixing rules were applied: the log‐additivity mixing rule and the quadratic mixing rule. Viscoelastic properties of the examined samples were described by mechanical and relaxation spectra. Since the RPA measurements cannot be performed in a wide frequency range, the experimental results cannot offer a complete overview. Also, the quantitative analysis using the differential of the heat capacity, dCp/dT, versus the temperature signal from TMDSC did not allow to calculate the weight fraction of the interface for all types of the blends under investigation. However, the combination of the two techniques applied provided complementary information on blend morphology and rubber–rubber miscibility. POLYM. ENG. SCI. 46:1649–1659, 2006. © 2006 Society of Plastics Engineers.  相似文献   

18.
Acrylonitrile‐co‐styrene‐co‐methylmethacrylate (AN‐S‐MMA) terpolymer was prepared by bulk and emulsifier‐free emulsion polymerization techniques. The bulk and emulsion terpolymers were characterized by means of Fourierr transform infrared spectroscopy, 13C nuclear magnetic resonance (NMR) spectroscopy, gel permeation chromatography, thermal gravimetric analysis, and elemental analysis. The kinetics of the terpolymerization were studied. The terpolymers were then incorporated into butadiene—acrylonitrile rubber (NBR)/ethylene propylene diene monomer rubber (EPDM) blends and into chloroprene rubber (CR)/EPDM blend. The terpolymers were then tested for potential as compatibilizers by using scanning electron microscopy and differential scanning calorimetry. The terpolymers improved the compatibility of CR/EPDM and NBR/EPDM blends. The physicomechanical properties of CR/EPDM and NBR/EPDM blend vulcanizates revealed that the incorporation of terpolymers was advantageous, since they resulted in blend vulcanizates with higher 100% moduli and with more thermally stable mechanical properties than the individual rubbers. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3143–3153, 2003  相似文献   

19.
A study has been carried out on the curing characteristics and mechanical properties of carbon black filled dichlorocarbene modified styrene butadiene rubber (DCSBR). Processing characteristics such as optimum cure time and maximum torque increases with increasing of the concentration of carbon black in DCSBR whereas scorch time decreases. The mechanical properties and resistance of the vulcanizate towards thermal, flame and oil resistance have been carried out. Variation of bound rubber content of carbon black filled DCSBR and the influence of the extracting temperature on the bound rubber content was investigated and its activation energy was calculated from the Arrhenius plot. The reinforcing nature of the filler was assessed from stress strain and swelling data. The enhancement in mechanical properties was supported by data on the increased content of crosslink density in these samples obtained from swelling and stress strain analysis. The results of the studies indicate that carbon black can be used as a good reinforcing filler for DCSBR.  相似文献   

20.
This study attempted to correlate morphological changes and physical properties for a high rubber content acrylonitrile–butadiene–styrene (ABS) and its diluted blends with a poly(styrene‐co‐acrylonitrile) (SAN) copolymer. The results showed a close relationship between rubber content and fracture toughness for the blends. The change of morphology in ABS/SAN blends explains in part some deviations in fracture behavior observed in ductile–brittle transition temperature shifts. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2606–2611, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号