首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper considers the problems of robust non‐fragile stochastic stabilization and H control for uncertain time‐delay stochastic systems with time‐varying norm‐bounded parameter uncertainties in both the state and input matrices. Attention is focused on the design of memoryless state feedback controllers which are subject to norm‐bounded uncertainties. For both the cases of additive and multiplicative controller uncertainties, delay‐independent sufficient conditions for the solvability of the above problems are obtained. The desired state feedback controller can be constructed by solving a certain linear matrix inequality.  相似文献   

2.
讨论了一类不确定线性离散系统的最优非脆弱保成本控制问题.考虑的系统和状态反馈控制器均具有时变的结构化的不确定性.基于线性矩阵不等式的方法,给出了存在和设计非脆弱保成本控制律的一个充分条件,以及在使二次成本函数上界最小意义下,最优非脆弱保成本控制律的凸优化设计方法.并用数值例子说明该方法降低了成本函数上界的保守性.  相似文献   

3.
This paper develops a novel finite‐time control design for linear systems subject to time‐varying delay and bounded control. Based on the Lyapunov‐like functional method and using a result on bounding estimation of integral inequality, we provide some sufficient conditions for designing state feedback controllers that guarantee the robust finite‐time stabilization with guaranteed cost control. The conditions are obtained in terms of linear matrix inequalities (LMIs), which can be determined by utilizing the MATLAB LMI Control Toolbox. A numerical example is given to show the effectiveness of the proposed method.  相似文献   

4.
This paper considers the problem of output‐feedback‐guaranteed cost controller design for uncertain time‐delay systems. The uncertainty in the system is assumed to be norm‐bounded and time‐varying. The time‐delay is allowed to enter the state and the measurement equations. A linear quadratic cost function is considered as a performance measure for the closed‐loop system. Necessary and sufficient conditions are provided for the construction of a guaranteed cost controller. These conditions are given in terms of the feasibility of LMIs which depend on a positive definite matrix and a scaling variable. A numerical algorithm is developed to search for a full order dynamic output‐feedback controller which minimizes the cost bound. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

5.
This paper investigates the non‐fragile robust control problem for a class of nonlinear networked control systems (NCSs) with long time‐varying delay. Both the uncertain nonlinearity and the controller gain fluctuation enter into the system in random ways, and such randomly occurring nonlinearity and randomly occurring controller gain fluctuation obey certain mutually uncorrelated Bernoulli distributed white noise sequences. A new time‐varying discrete time system model is proposed to describe the NCS. To reduce conservatism arising from modeling time‐varying parts, the time‐varying parts due to the time‐varying delay are treated as a norm‐bounded uncertainty with one nominal point using robust control techniques. Based on the obtained uncertain system model, a regular and an optimal sufficient non‐fragile controllers are derived by applying the Lyapunov stability theory and the linear matrix inequality technique, which render the closed‐loop NCS to be asymptotically stable and guarantee an upper bound of the given performance cost for all admissible uncertainties. Moreover, the existence condition and design method for the non‐fragile stabilizing controllers are also presented. Two numerical examples are provided to demonstrate the effectiveness of the proposed scheme. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, a new approach is developed to discuss the stabilization problem for a class of continuous‐time delayed systems, which is firstly achieved by a kind of partially delay‐dependent controller. The main property of the desired controller is that both non‐delay and delay states are contained. Different from the traditional stabilization methods realized by totally non‐delay or delay state feedback controllers, both non‐delay and delay states are contained but take place asynchronously, where the probability distributions of such terms are considered in the controller design process. Based on the established model, new stabilization conditions depending on such probabilities are presented with linear matrix inequality forms. Moreover, another general case in terms of probability having uncertainty is also considered. Finally, numerical examples are used to illustrate the effectiveness and superiority of the design methods.  相似文献   

7.
This paper investigates a novel design method for robust nonfragile proportional‐integral‐derivative (PID) control that is based on the guaranteed cost control (GCC) problem for a class of uncertain discrete‐time stochastic systems with additive gain perturbations. On the basis of linear matrix inequality (LMI), a class of fixed PID controller parameters is obtained, and some sufficient conditions for the existence of the GCC are derived. Although the additive gain perturbations are included in the feedback systems, both the stability of closed‐loop systems and adequate cost bound are attained. As a sequel, decentralized GCC PID for a class of discrete‐time uncertain large‐scale stochastic systems is also considered. Finally, the numerical results demonstrate the efficiency of the proposed controller synthesis. Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

8.
A kind of H non‐fragile synchronization guaranteed control method is put forward for a class of uncertain time‐varying delay complex network systems with disturbance input. The network under consideration includes unknown but bounded nonlinear coupling functions f(x) and the coupling term and node system with time‐varying delays. The nonlinear vector function f(x) need not be differentiable but should satisfy the norm bound. A non‐fragile state feedback controller of the gain with sufficiently large regulation margin is designed. It is ensured that the parameters of the controller could still be effective under small perturbation. The sufficient conditions for the existence of H synchronous non‐fragile guaranteed control of this system have been obtained by constructing a suitable Lyapunov‐Krasovskii functional, adopting matrix analysis, using the theorem of Schur complement and linear matrix inequalities (LMI). These conditions can guarantee robust asymptotic stability for each node of network with disturbance as well as achieve a prescribed robust H performance level. Finally, the feasibility of the designed method is verified by a numerical example.  相似文献   

9.
The guaranteed cost control problem for discrete‐time singular Markov jump systems with parameter uncertainties is discussed. The weighting matrix in quadratic cost function is indefinite. For full and partial knowledge of transition probabilities cases, state feedback controllers are designed based on linear matrix inequalities method which guarantee that the closed‐loop discrete‐time singular Markov jump systems are regular, causal and robust stochastically stable, and the cost value has a zero lower bound and a finite upper bound. A numerical example to illustrate the effectiveness of the method is given in the paper. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, we develop a unified framework to address the problem of optimal nonlinear analysis and feedback control for partial stability and partial‐state stabilization. Partial asymptotic stability of the closed‐loop nonlinear system is guaranteed by means of a Lyapunov function that is positive definite and decrescent with respect to part of the system state, which can clearly be seen to be the solution to the steady‐state form of the Hamilton–Jacobi–Bellman equation and hence guaranteeing both partial stability and optimality. The overall framework provides the foundation for extending optimal linear‐quadratic controller synthesis to nonlinear nonquadratic optimal partial‐state stabilization. Connections to optimal linear and nonlinear regulation for linear and nonlinear time‐varying systems with quadratic and nonlinear nonquadratic cost functionals are also provided. Finally, we also develop optimal feedback controllers for affine nonlinear systems using an inverse optimality framework tailored to the partial‐state stabilization problem and use this result to address polynomial and multilinear forms in the performance criterion. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
This paper considers the problem of guaranteed cost control for uncertain neutral delay systems with a quadratic cost function. The system under consideration is subject to norm‐bounded time‐varying parametric uncertainty appearing in all the matrices of the state‐space model. The problem we address is the design of a state feedback controller such that the closed‐loop system is not only stable but also guarantees an adequate level of performance for all admissible uncertainties. A sufficient condition for the existence of guaranteed cost controllers is given in terms of a linear matrix inequality (LMI). When this condition is feasible, the desired state feedback controller gain matrices can be obtained via convex optimization. An illustrative example is provided to demonstrate the effectiveness of the proposed approach. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
一类不确定广义时滞系统的保性能控制   总被引:1,自引:1,他引:0  
研究同时具有状态时滞和控制输入时滞的一类不确定广义系统的保性能控制问题。对于给定的性能指标及所容许的不确定和时滞,设计一个无记忆状态反馈控制律,使得闭环系统是渐近稳定的,闭环系统的性能函数值不大于给定的一个数。利用Lyapunov稳定性定理和线性矩阵不等式工具,得到广义系统的状态反馈保性能鲁棒控制器存在的充分条件和设计方法,并给出相应性能指标上界。仿真示例表明该方法的有效性。  相似文献   

13.
一类参数不确定时滞系统的保成本控制   总被引:1,自引:0,他引:1  
通过构造参数相关的李雅普诺夫函数,利用S-procedure方法研究一类具有参数不确定性和状态滞后的线性动态系统,得到了这类不确定时滞系统存在保成本控制器的充分条件.  相似文献   

14.
针对一类同时具有状态多时滞和输入多时滞的时变不确定连续多时滞系统。研究保成本状态反馈控制器的设计。假定其中的时变不确定性项是范数有界的,但不需要满足匹配条件,通过构造改造的Lyapunov函数和线性矩阵不等式(LMI)方法,给出系统满足保性能指标的一个充分条件,仅通过求解一个相应的线性矩阵不等式,就可得到保性能控制器使得闭环系统的一个保成本函数对所有允许的不确定参数有上界。通过求解凸优化问题得到最优保性能控制器,最后用数值例子说明该方法的有效性。  相似文献   

15.
This paper is an extended study of an existing block backstepping control scheme designed for a class of perturbed multi‐input systems with multiple time‐varying delays to solve regulation problems, where the time‐varying delays must be linear with state variables. A new control scheme is proposed in this research where all the unknown multiple time‐varying delay terms in the dynamic equations can be nonlinear state functions in non‐strict feedback form, and the upper bounds of the time‐delays as well as their derivatives need not to be known in advance. Another improvement is to further alleviate the problem of “explosion of complexity,” i.e., to reduce the number of time derivatives of virtual inputs that the designers have to compute in the design of controllers. This is done by utilizing an existent derivative estimation algorithm to estimate the perturbations in the designing of proposed controllers. Adaptive mechanisms are also embedded in the controllers so that the upper bounds of perturbations and perturbation estimation errors are not required to be known beforehand. The resultant controlled systems guarantee asymptotic stability in accordance with the Lyapunov stability theorem. Finally, a numerical example and a practical application are demonstrated to verify the merits and feasibility of the proposed control scheme.  相似文献   

16.
针对一类具有范数有界时变参数不确定性的线性系统的和一个给定的二次型性能指标,研究了其最优保性能控制问题,用一个线性矩阵不等式系统的可解性给出了存在保性能状态反馈控制律的条件,并且这个线性矩阵不等式系统的可行解提供了一组保性能控制律的一个参数化表示,进而保性能控制律的这一刻划被用来求解最优保成本控制问题。  相似文献   

17.
This paper describes a delay‐range‐dependent local state feedback controller synthesis approach providing estimation of the region of stability for nonlinear time‐delay systems under input saturation. By employing a Lyapunov–Krasovskii functional, properties of nonlinear functions, local sector condition and Jensen's inequality, a sufficient condition is derived for stabilization of nonlinear systems with interval delays varying within a range. Novel solutions to the delay‐range‐dependent and delay‐dependent stabilization problems for linear and nonlinear time‐delay systems, respectively, subject to input saturation are derived as specific scenarios of the proposed control strategy. Also, a delay‐rate‐independent condition for control of nonlinear systems in the presence of input saturation with unknown delay‐derivative bound information is established. And further, a robust state feedback controller synthesis scheme ensuring L2 gain reduction from disturbance to output is devised to address the problem of the stabilization of input‐constrained nonlinear time‐delay systems with varying interval lags. The proposed design conditions can be solved using linear matrix inequality tools in connection with conventional cone complementary linearization algorithms. Simulation results for an unstable nonlinear time‐delay network and a large‐scale chemical reactor under input saturation and varying interval time‐delays are analyzed to demonstrate the effectiveness of the proposed methodology. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
This paper is concerned with the finite‐time guaranteed cost control problem for stochastic Markovian jump systems with incomplete transition rates. By a mode‐dependent approach (MDA), several new sufficient conditions for the existence of state and output feedback finite‐time guaranteed cost controllers are provided, and the upper bound of cost function is more accurately expressed. Moreover, these results' superiorities are analyzed and shown. A new N‐mode optimization algorithm is given to minimize the upper bound of cost function. Finally, a detailed example is utilized to demonstrate the merit of the proposed results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
This paper discusses a generalized quadratic stabilization problem for a class of discrete‐time singular systems with time‐delay and nonlinear perturbation (DSSDP), which the satisfies Lipschitz condition. By means of the S‐procedure approach, necessary and sufficient conditions are presented via a matrix inequality such that the control system is generalized quadratically stabilizable. An explicit expression of the static state feedback controllers is obtained via some free choices of parameters. It is shown in this paper that generalized quadratic stability also implies exponential stability for linear discrete‐time singular systems or more generally, DSSDP. In addition, this new approach for discrete singular systems (DSS) is developed in order to cast the problem as a convex optimization involving linear matrix inequalities (LMIs), such that the controller can stabilize the overall system. This approach provides generalized quadratic stabilization for uncertain DSS and also extends the existing robust stabilization results for non‐singular discrete systems with perturbation. The approach is illustrated here by means of numerical examples.  相似文献   

20.
In this paper, we develop optimal output feedback controllers for set‐point regulation of linear non‐negative dynamical systems. Specifically, using a constrained fixed‐structure control framework we develop optimal output feedback control laws that guarantee that the trajectories of the closed‐loop system remain in the non‐negative orthant of the state space for non‐negative initial conditions. In addition, we characterize domains of attraction predicated on closed and open Lyapunov level surfaces contained in the non‐negative orthant for unconstrained optimal linear‐quadratic output feedback controllers. Output feedback controllers for compartmental systems with non‐negative inputs are also given. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号