首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Channel die compression has been used to form highly oriented syndiotactic styrene–p‐methylstyrene copolymer in the solid state. The highest forming temperatures were at or near the nominal unoriented melting point (247°C). The oriented materials produced at 245 and 220°C were examined by differential scanning calorimetry, wide‐angle X‐ray diffraction, and dynamic mechanical thermal analysis. The measured increases in modulus, which resulted from the forming of the copolymer could be related to the microstructural changes in the material. The analysis of mechanical properties with a simple Takayanagi model showed that the high modulus above the glass transition temperature in oriented samples was at least partly due to an interlamellar constraint of the kind suggested by Arridge and co‐workers. The magnitudes of the constraint factor that were estimated in the modeling process were consistent with the observed microstructural changes. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2312–2321, 2002  相似文献   

2.
3.
The random copolymers (HO‐P(St‐r‐MMA)‐COOH) of styrene (St) and methyl methacrylate (MMA) with hydroxyl group at one end and carboxyl group at another end were synthesized by nitroxide‐mediated living radical polymerization initiated by 4,4′‐azobis(4‐cyanovaleric acid) (ACVA) and 4‐hydroxyl‐2,2,6,6–tetramethylpiperidineoxyl (TEMPO‐OH). The experimental results have shown that all synthesized copolymers have narrow molecular weight distribution. The conversion of monomers and the molecular weight of copolymer increase with polymerization time. Thus, a copolymerization mechanism containing living radical polymerization is suggested. The use of this method permits the copolymer with two functional chain ends and controllable molecular weight as well as low molecular weight distribution. X‐ray photoelectron spectroscopy result shows that the synthesized copolymers can be tethered on the surface of silicon wafer through the reaction between the hydroxyl end of the copolymer and native oxide layer on the wafer. In addition, an organic/inorganic hybrid surface has achieved by treating copolymer tethered Si‐substrates with SiCl4 vapor. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3118–3122, 2006  相似文献   

4.
苯乙烯和甲基丙烯酸甲酯梯度共聚物的应用   总被引:1,自引:0,他引:1  
将用原子转移自由基聚合及连续补加甲基丙烯酸甲酯(MMA)的方法制备的苯乙烯(St)/MMA梯度聚合物P(Pt-t-MMA)作为增容剂应用于聚氯乙烯/苯乙烯-丁二烯-苯乙烯嵌段共聚物(PVC/SBS)和PS/PMMA聚合物合金的增容和改性。扫描电镜结果表明,P(St-t-MMA)可以改善PVC/SBS和PMMA/PS合金的相容性。PVC/SBS合金中加入少量P(St-t-MMA)后,冲击强度从6.0kJ/m^2提高到12.1kJ/m^2,加工流变性能得到了改善。SBS用量也影响PVC/SBS合金的冲击强度。  相似文献   

5.
苯乙烯和甲基丙烯酸甲酯梯度共聚物的合成   总被引:6,自引:1,他引:6  
以2-溴异丁酸乙酯为引发剂,溴化亚酮/联二吡啶/铜为催化剂,通过原子转移自由基聚合(ATRP)以及连续补加第二单体的方法制备苯乙烯(St)-甲基丙烯酸甲酯(MMA)梯度共聚物。共聚物相对分子质量的可控性和窄分布证明这是一种活性聚合过程,反应过程中聚合物链的组成变化情况说明形成了梯度结构;聚合温度和MMA加料速度影响聚合速率和共聚物梯度结构,聚合温度升高和加料速度增大使聚合速率加快;改变单体与引发剂的配比,可以得到相应的相对分子质量聚合物。  相似文献   

6.
Polylactide stereocopolymer multifilament fibers were prepared by wet spinning and subsequent hot drawing. The stereocopolymers were poly‐(L,D ‐lactide) [P(L,D )LA], L/D ratio 96/4, and poly‐(L,DL ‐lactide) [P(L,DL )LA], L/DL ratio 70/30. They were dissolved in dichloromethane and coagulated in a spin bath containing ethanol. The hot‐drawing temperature was 65°C. The draw ratios (DR) were upto 4.5 to the P(L,D )LA 96/4 filaments and upto 3 to the P(L,DL )LA 70/30 filaments. Wet spinning decreased crystallinities of both copolymers. Hot drawing increased the crystallinity of the P(L,D )LA 96/4 filament but not to the level of the original copolymer, whereas the as‐spun and the hot‐drawn P(L,DL )LA 70/30 filaments were amorphous. The filament diameter, tenacity, Young's modulus, and elongation at break were dependent on the DR. The maximum tenacity (285 MPa) and Young's modulus (2.0 GPa) were achieved with the P(L,D )LA 96/4 filament at the DR of 4.5. Respectively, the maximum tenacity of the hot‐drawn P(L,DL )LA 70/30 filament was 175 MPa and Young's modulus 1.3 GPa at the DR of 3. Hot drawing slowed down in vitro degradation rate of both stereocopolymer filaments. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

7.
The reactive compatibilization of syndiotactic polystyrene (sPS)/oxazoline‐styrene copolymer (RPS)/maleic anhydride grafted ethylene‐propylene copolymer (EPR‐MA) blends is investigated in this study. First, the miscibility of sPS/RPS blends is examined by thermal analysis. The cold crystallization peak (Tcc) moved toward higher temperature with increased PRS, and, concerning enthalpy relaxation behaviors, only a single enthalpy relation peak was found in all aged samples. These results indicate that the sPS/RPS blend is miscible along the various compositions and RPS can be used in the reactive compatibilization of sPS/RPS/EPR‐MA blends. The reactive compatibilized sPS/RPS/EPR‐MA blends showed finer morphology than sPS/EPR‐MA physical blends and higher storage modulus (G') and complex viscosity (η*) when RPS contents were increased. Moreover, the impact strength of sPS/RPS/EPR‐MA increased significantly compared to sPS/EPR‐MA blend, and SEM micrographs after impact testing show that the sPS/RPS/EPR‐MA blend has better adhesion between the sPS matrix and the dispersed EPR‐MA phase. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2084–2091, 2002  相似文献   

8.
L H Gan  Y Y Gan  W S Yin 《Polymer International》1999,48(11):1160-1164
A series of new conducting interpenetrating polymer networks (IPNs) are prepared by sequential crosslinking reactions of tetraethyl orthosilicate with silicon‐grafted functional styrene‐isoprene‐styrene triblock copolymer (SIS) and polyaniline (PANI) doped with dodecylbenzenesulfonic acid (DBSA). The various factors affecting the properties of conductive IPNs are investigated. The conductivity is found to increase only slightly after the IPN films are treated at 140 ° C . The thermal stability of the IPNs is much better than that of the pure polymer under nitrogen atmosphere, as shown by the results from thermal gravimetry analysis (TGA). © 1999 Society of Chemical Industry  相似文献   

9.
By choosing a proper agitator and reinforcing its stirring shear, powdery syndiotactic polystyrene (sPS) is prepared in a bulk precipitation process with two homogeneous metallocene catalyst systems [Cp*TiX3/MAO/TIBA (X = Cl or OPhOMe)]. A full‐range kinetics study of the heterogeneous polymerization is performed in detail to produce this kind of powdery sPS in an industrial process. A typical curve of conversion versus time takes an S shape and an obvious acceleration phenomenon occurs in the middle stage of the polymerization, although the polymer–monomer gel is avoided. The viscous‐average molecular weight of sPS goes through a peculiar increasing–decreasing–increasing change during the bulk polymerization process. These phenomena are viewed in terms of the two‐phase polymerization mechanism and the overheating in particles during polymerization. The influence of the metallocene catalyst type and concentration, MAO/Ti ratio, triisobutyl aluminum (TIBA)/Ti ratio, and polymerization temperature on the polymerization kinetics are investigated. TIBA has dual effects on the polymerization. A small amount of TIBA in the catalyst system promotes polymerization, but more TIBA leads to a low molecular weight sPS. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2635–2643, 2002  相似文献   

10.
High‐strength and porous ultrahigh‐molecular‐weight polyethylene (UHMWPE) fibers have been prepared through a two‐stage drawing process. Combined with tensile testing, scanning electron microscopy, and small‐angle X‐ray scattering, the mechanical properties, porosity, and microstructural evolution of the UHMWPE fibers were investigated. The first‐stage cold drawing of the gel‐spun fibers and subsequent extraction process produced fibers with oriented lamellae stacks on the surface and plentiful voids inside but with poor mechanical properties. The second‐stage hot drawing of the extracted fibers significantly improved the mechanical properties of the porous fibers because of the formation of lamellar backbone networks on the surface and microfibrillar networks interwoven inside to support the voids. With various processing conditions, the optimized mechanical properties and porosity of the prepared UHMWPE fibers were obtained a tensile strength of 1.31 GPa, a modulus of 10.1 GPa, and a porosity of 35%. In addition, a molecular schematic diagram is proposed to describe structural development under two‐stage drawing, including void formation and lamellar evolution. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42823.  相似文献   

11.
The effect of graft ratio on the dynamic moduli of ABS (Acrylonitrile‐Butadiene‐Styrene Copolymer) has been investigated. Unlike previous papers, the storage modulus at low frequency shows both minimum and maximum as graft ratio increases, and the rubber particles do not agglomerate significantly at high graft ratios. The dependence of the rheological properties on the graft ratio is quite complicated. This arises from its morphological change that leads to different interactions between the rubbery phase and the matrix phase. The minimum has been reported previously, and is explained in terms of rubber dispersion. However, the maximum at high graft ratio has never been reported. The origin of maximum seems to come from the repulsive forces between the long graft chains of neighboring rubber particles. Analogy between our experimental results and simulation results has been discussed to deduce the mechanism of maximum storage modulus at high graft ratio.  相似文献   

12.
Free radical copolymerization kinetics of 2‐(diisopropylamino)ethyl methacrylate (DPA) with styrene (ST) or methyl methacrylate (MMA) was investigated and the corresponding copolymers obtained were characterized. Polymerization was performed using tert‐butylperoxy‐2‐ethylhexanoate (0.01 mol dm?3) as initiator, isothermally (70 °C) to low conversions (<10 wt%) in a wide range of copolymer compositions (10 mol% steps). The reactivity ratios of the monomers were calculated using linear Kelen–Tüd?s (KT) and nonlinear Tidwell–Mortimer (TM) methods. The reactivity ratios for MMA/DPA were found to be r1 = 0.99 and r2 = 1.00 (KT), r1 = 0.99 and r2 = 1.03 (TM); for the ST/DPA system r1 = 2.74, r2 = 0.54 (KT) and r1 = 2.48, r2 = 0.49 (TM). It can be concluded that copolymerization of MMA with DPA is ideal while copolymerization of ST with DPA has a small but noticeable tendency for block copolymer building. The probabilities for formations of dyad and triad monomer sequences dependent on monomer compositions were calculated from the obtained reactivity ratios. The molar mass distribution, thermal stability and glass transition temperatures of synthesized copolymers were determined. Hydrophobicity of copolymers depending on the composition was determined using contact angle measurements, decreasing from hydrophobic polystyrene and poly(methyl methacrylate) to hydrophilic DPA. Copolymerization reactivity ratios are crucial for the control of copolymer structural properties and conversion heterogeneity that greatly influence the applications of copolymers as rheology modifiers of lubricating oils or in drug delivery systems. © 2015 Society of Chemical Industry  相似文献   

13.
The copolymer resulting from the polymerization of methyl methacrylate and styrene in the aqueous phase was tested for its mechanical and thermal properties. The usual procedure to obtain such a copolymer is by radical polymerization, but it can be done also by an ionic solution polymerization and in most cases the copolymer obtained has a statistical polymer arrangement. As this polymer is made by a complex mechanism in the presence of zinc chloride and water, it has many interesting features. The polymerization itself in the presence of water has a good industrial appeal as it simplifies considerably the operations as well as eliminates the suspension phase solvent cost. Another feature is the molecular weight distribution; we have two definite nearly monodisperse groups of polymers—one of these groups has an average molecular weight of 107. The thermal properties of the polymers were studied as functions of the polymerization conditions and a mathematical expression was derived relating these factors. The mechanical properties of this, polymer compares favorably to available industrial products.  相似文献   

14.
The free‐radical copolymerization of methyl methacrylate (MMA) with NP‐tolylmalemide (NPTMI) at 77°C in cyclohexanone solution initiated by AIBN was studied. The copolymer composition was calculated from the nitrogen content estimated by the Mico–Kijedldahl's method and by elemental analysis. The reactivity ratios have been calculated by Fineman and Ross method. The monomer reactivity ratios were rNPTMI = 1.24, rMMA = 2.1. The glass transition temperature (Tg) of the copolymers were determined by torsion braid analysis (TBA). The thermal stability was determined by thermogravimetric analysis (TGA). T50, temperature at which the weight loss reaches 50%, was abstained. The results showed that the M n and M w increased, whereas the NPTMI feed content increased. The Tg and T50 increased dramatically. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 867–870, 2004  相似文献   

15.
16.
Bis(3‐triethoxysilylpropyl) tetrasulfane (TSS) was reacted with the silanol groups of the commercially available clay, Closite®25A (C25A) to prepare TSS‐C25A, which was melt‐compounded with acrylonitrile‐butadiene‐styrene copolymer (ABS). The tetra sulfide groups of TSS‐C25A may chemically react with the vinyl groups of ABS to enhance the interaction between the clay and ABS. The ABS/clay composites exhibited much higher tensile strength and elongation at break than the neat ABS. Especially the elongation at break of ABS/TSS‐C25A composite was 5 times higher than that of neat ABS. The X‐ray diffraction patterns of the clay showed that the d001 basal spacing was enlarged from 1.89 nm to 2.71–2.86 nm as a result of the compounding with ABS. According to the thermogravimetric analysis, the thermal decomposition of the composite took place at a slightly higher temperature than that of neat ABS. Intercalated/exfoliated coexisting structures were observed by transmission electron microscopy for the ABS/clay composites. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

17.
Atom transfer radical polymerization (ATRP) was employed to prepare graft copolymers having poly(MBr)‐alt‐poly(St) copolymer as backbone and poly(methyl methacrylate) (PMMA) as branches to obtain heat resistant graft copolymers. The macroinitiator was prepared by copolymerization of bromine functionalized maleimide (MBr) with styrene (St). The polymerization of MMA was initiated by poly(MBr)‐alt‐poly(St) carrying bromine groups as macroinitiator in the presence of copper bromide (CuBr) and bipyridine (bpy) at 110°C. Both macroinitiator and graft copolymers were characterized by 1H NMR, GPC, DSC, and TGA. The ATRP graft copolymerization was supported by an increase in the molecular weight (MW) of the graft copolymers as compared to that of the macroinitiator and also by their monomodal MW distribution. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

18.
Ethylene–methyl acrylate copolymer (Elvaloy 1330) was irradiated by an electron beam at different levels of radiation both in the presence and absence of a trimethylolpropane trimethacrylate sensitizer at various dosages of incorporation. The mechanical, thermal, and electrical properties of these samples were compared. The mechanical properties were observed to reach an optimum maximum around 6 Mrad of irradiation and 1 phr of sensitizer incorporation. Furthermore, an increase in either the radiation dose or the sensitizer level helped very little to further modify the properties. The thermal properties as determined by the thermogravimetric analysis and differential scanning calorimetry studies were quite supportive of the observation made during the study of the mechanical properties. The thermal stability of the irradiated samples underwent an increase with increasing electron‐beam dosage. In a manner similar to those of the mechanical properties, the increase in thermal stability was found to reach a maximum at a particular level of treatment and sensitizer incorporation, beyond which there was marginal or no effect at all. The α transition temperature underwent a substantial increase with increasing crosslink density, as evidenced by the increase in gel content with increasing proportion of electron‐beam radiation dose. The other glass‐transition temperature, however, appeared to remain unaffected. The electrical properties, as described by the dielectric constant, volume resistivity, and breakdown voltage, appeared to be affected very little by the electron‐beam radiation. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
In this article, we report on the effect of using ultrasound during emulsion polymerization. This work differs somewhat from that previously reported in that ultrasound is used in conjunction with conventional initiators. The aim is to observe the changes in the nature of polymerization and the synthesized polymer. In this work, reaction conditions and compositions typical of conventional emulsion polymerization are used. Azo‐bisisobutyronitrile and potassium per sulfate are the initiators used. The initial indication is that the rate of polymerization and the final conversion are higher when ultrasound is introduced into the polymerization system. This effect is more pronounced at lower temperatures (50°C) and low initiator concentrations (0.01%). At higher temperatures (70°C) the polymerization rate is seemingly unaffected by the use of ultrasound. The final product in all the experiments is a latex. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 101–104, 2000  相似文献   

20.
以α-溴代丙酸乙酯为引发剂引发MMA和TEMPO自由基发生ATRP活性共聚合,,制得带数个TEMPO基团的PMMA预聚物,它能直接引发苯乙烯发生氮氧自由基下的ATRP,制得侧链相对分子质量可控的多支化PMMA-g-PS。由于氮氧自由基容易夺得PMMA-g-PS。由于氮氧自由基容易夺得PMMA预聚物中EPNBr链端中的ω碳氢,导致引发效率下降,最终的PMMA-g-PS。由于共聚物相对分子质量分布趋宽  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号