首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The scope of this study is to characterize the mechanical properties of a novel Transformation‐Induced Plasticity bainitic steel grade TBC700Y980T. For this purpose, tensile tests are carried out with loading direction 0, 45 and 90° with respect to the L rolling direction. Yield stress is found to be higher than 700 MPa, ultimate tensile strength larger than 1050 MPa and total elongation higher than 15%. Low‐cycle fatigue (LCF) tests are carried out under fully reverse axial strain exploring fatigue lives comprised between 102 and 105 fatigue cycles. The data are used to determine the parameters of the Coffin–Manson as well as the cyclic stress–strain curve. No significant stress‐induced austenite transformation is detected. The high‐cycle fatigue (HCF) behaviour is investigated through load controlled axial tests exploring fatigue tests up to 5 × 106 fatigue cycles at two loading ratios, namely R = ?1 and R = 0. At fatigue lives longer than 2 × 105 cycles, the strain life curve determined from LCF tests tends to greatly underestimate the HCF resistance of the material. Apparently, the HCF behaviour of this material cannot be extrapolated from LCF tests, as different damage, cyclic hardening mechanisms and microstructural conditions are involved. In particular, in the HCF regime, the predominant damage mechanism is nucleation of fatigue cracks in the vicinity of oxide inclusions, whereby mean value and scatter in fatigue limit are directly correlated to the dimension of these inclusions.  相似文献   

2.
A critical distance method for predicting the fatigue limit stresses of notched specimens was implemented for notched specimens with a wide range of notch dimensions. Circumferentially notched cylindrical specimens (kt=1.97–4.07) taken from Ti–6Al–4V forged plate were cycled to failure (R=0.1 and 0.5) using a step loading method for estimating the 106 cycle fatigue limit stresses. These experimental data were used in combination with finite element solutions for all specimen geometries to determine a ‘critical distance’, a quantity or parameter determined from the stress distribution surrounding the notch in combination with fatigue limit stress data from unnotched specimens. A unique parameter was not found for all of the specimen geometries. However, predictions for the fatigue limit stresses of the larger notch geometries may be made with some amount of accuracy using a single value of the critical distance parameter, while reasonable predictions for the specimens with the smallest notch dimensions may be made upon the recognition of an apparent size effect.  相似文献   

3.
The fatigue behaviour of a titanium alloy Ti‐6Al‐4V with equiaxed microstructure (EM) under different values of tensile mean stress or stress ratio (R) was investigated from high‐cycle fatigue (HCF) to very‐high‐cycle fatigue (VHCF) regimes via ultrasonic axial cycling. The effect of mean stress or R on the fatigue strength of HCF and VHCF was addressed by Goodman, Gerber, and Authors' formula. Three types of crack initiation, namely, surface‐with‐RA (rough area), surface‐without‐RA, and interior‐with‐RA, were classified. The maximum value of stress intensity factor (SIF) at RA boundary for R < 0 keeps constant regardless of R in HCF and VHCF regimes. The SIF range at RA boundary for R > 0 also keeps constant regardless of R in VHCF regime, but this value decreases linearly with the increase of R for surface RA cases. The microstructure observation at RA regions gives a new result of nanograin formation only in the cases of negative stress ratios for the titanium alloy with EM, which is explained by the mechanism of numerous cyclic pressing.  相似文献   

4.
Effects of prior low cycle fatigue (LCF) cycling on the subsequent high cycle fatigue (HCF) limit stress corresponding to a life of 107 cycles are investigated for Ti-6Al-4V at room temperature. Tests are conducted at 420 Hz on an electrodynamic shaker-based system at several different LCF maximum loads and under subsequent HCF at R=0.1, 0.5 and 0.8 using a step loading procedure. Under these load combinations, which include the possibility of overload or underload effects if cracks form, there is no statistically significant effect of the prior LCF on the subsequent HCF limit stress. While LCF loading at a high stress of 900 MPa is seen to result in strain ratcheting, no distinct features on the fracture surface and different mechanisms of crack propagation from those obtained at lower maximum loads were observed. LCF loading up to 50% of expected life did not produce any indications of crack formation from either the stress limit data or the fracture surfaces.  相似文献   

5.
The objective of this study is to investigate the effects of mean stress and ageing treatment on the low‐cycle fatigue (LCF) behaviour of a precipitation‐hardening martensitic stainless steel (PHMSS). Uniaxial LCF tests were conducted under strain control with three strain ratios, R = ?1, 0 and 0.5 on specimens heat‐treated to three different tempers, i.e. solution‐annealed (SA), peak‐aged (H900) and overaged (H1150) conditions. Experimental results indicated that under a strain ratio of R = ?1, specimens in H900 temper exhibited longer LCF lifetimes than those in SA and H1150 tempers. However, this advantage for H900 over SA and H1150 tempers disappeared at higher strain ratios (R = 0 and 0.5) due to the greater sensitivity to mean stress effects in H900 temper. For a given temper at high strain amplitudes, the LCF lifetimes under the three applied strain ratios did not show significant differences as a result of the mean stress relaxation effect. However, at low strain amplitudes, cyclic loading at R = ?1 generated longer LCF lifetimes in comparison to R = 0 and 0.5 due to the absence of detrimental tensile mean stress. LCF lifetime data obtained for the given PHMSSs under various combinations of strain ratio and heat treatment were well correlated with a strength‐normalized Smith–Watson–Topper (SWT) parameter in a log–log linear model.  相似文献   

6.
In order to investigate the effects of stress concentration on low cycle fatigue properties and fracture behaviour of a nickel‐based powder metallurgy superalloy, FGH97, at elevated temperature, the low cycle fatigue tests have been conducted with semi‐circular and semi‐elliptical single‐edge notched plate specimens at 550 and 700 °C. The results show that the fatigue life of the notched specimen decreases with the increase of stress concentration factor and the fatigue crack initiation life evidently decreases because of the defect located in the stress concentration zone. Moreover, the plastic deformation induced by notch stress concentration affects the initial crack occurrence zone. The angle α of the crack occurrence zone is within ±10° of notch bisector for semi‐circular notched specimens and ±20° for semi‐elliptical notched specimens. The crack propagation rate decreases to a minimum at a certain length, D, and then increases with the growth of the crack. The crack propagation rate of the semi‐elliptical notched specimen decelerates at a faster rate than that of the semi‐circular notched specimen because of the increase of the notch plasticity gradient. The crack length, D, is affected by both the applied load and the notch plasticity gradient. In addition, the fracture mechanism is shown to transition from transgranular to intergranular as temperature increases from 550 to 700 °C, which would accelerate crack propagation and reduce the fatigue life.  相似文献   

7.
Constant amplitude fatigue of a material at a fixed stress ratio, R, and at some limiting stress level, may produce high cycle fatigue (HCF) lives in excess of some large number, typically 107 or higher, which can be treated as an endurance limit. Under vibratory loading, stress transients can exceed this endurance limit amplitude and cause damage that accumulates with repeated transient loading. These HCF transients normally occur at lower stress amplitudes than those needed to cause low cycle fatigue (LCF) where lives, N, are typically in the range N < 104–105. Therefore, the HCF transient stresses produce cycles to failure beyond the normal LCF regime but correspond to amplitudes that are above the fatigue limit stress. In this investigation, a titanium alloy, Ti-6Al-4V, is subjected to HCF stress transients while being cycled under constant amplitude HCF. The HCF transients correspond to blocks of loading above the fatigue limit stress applied for a specified fraction of their expected life. A step-loading procedure is used to determine the fatigue limit stress at a frequency of 420 Hz. Stress transients applied at stresses up to 40% above the endurance limit for cycle counts up to 25% of expected life are found to have little or no effect on the fatigue limit stress. Simple calculations of the propagation life in a test specimen show that most of the life at these transient stress levels is spent in the nucleation phase. Fractography, aided by heat tinting, was unable to detect any prior cracks due to the HCF stress transients on the fractured specimens.  相似文献   

8.
Influence of Dynamic strain aging (DSA) under low cycle fatigue (LCF) and high cycle fatigue (HCF) loading was investigated by conducting LCF and HCF tests on specimens over a wide range of temperature from 573 to 973 K. DSA was found to be highly pronounced in the temperature range of 823–873 K. DSA was seen to have contrasting implications under LCF and HCF deformation. The cyclic hardening owing to DSA caused an increase in the cyclic stress response under LCF, leading to decrease in cyclic life. On the other hand, the DSA-induced strengthening suppressed the crack initiation phase under HCF where the applied stress remains fixed, leading to an increase in the cyclic life.  相似文献   

9.
The paper deals with the multi‐axial fatigue strength of notched specimens made of 39NiCrMo3 hardened and tempered steel. Circumferentially V‐notched specimens were subjected to combined tension and torsion loading, both in‐phase and out‐of‐phase, under two nominal load ratios, R=?1 and R= 0, also taking into account the influence of the biaxiality ratio, λ=τaa. The notch geometry of all axi‐symmetric specimens was a notch tip radius of 0.1 mm, a notch depth of 4 mm, an included V‐notch angle of 90° and a net section diameter of 12 mm. The results from multi‐axial tests are discussed together with those obtained under pure tension and pure torsion loading on plain and notched specimens. Furthermore the fracture surfaces are examined and the size of non‐propagating cracks measured from some run‐out specimens at 5 million cycles. Finally, all results are presented in terms of the local strain energy density averaged in a given control volume close to the V‐notch tip. The control volume is found to be dependent on the loading mode.  相似文献   

10.
An improved understanding of fatigue crack growth phenomena applicable to titanium engine disks was developed through complimentary experimental and analytical investigations of Ti-17. The effect of low cycle fatigue (LCF) on the high cycle fatigue (HCF) threshold and rate of crack propagation was studied. A simplified variable-amplitude spectrum, consisting of high-R cycles, corresponding to HCF loading, and periodic R=0.1 cycles, corresponding to LCF loading, was used to demonstrate a load-interaction effect. When the ratio of HCF to LCF cycles was 100 or more the fatigue crack growth lifetimes were significantly lower than predicted using linear damage summation methods assuming no load-interaction effect. Thus, it was concluded that the LCF cycle accelerated the fatigue crack growth rate of subsequent HCF cycles, even when closure was concluded to be negligible. A phenomenological model was formulated based on hypothesized changes in the propagation resistance, KPR, and fit to the test data. The model confirmed that the periodic LCF cycles increased fatigue crack growth rates of subsequent HCF cycles.  相似文献   

11.
PVD coatings applied to components form hard, stronger layers and generate high residual compressive stresses that limit the plastic deformation in surface layers of the base metal thus increasing its tensile strength and resistance to fatigue loading. The purpose of this paper is to experimentally determine the influence of the deposition of 2 to 16.5‐μm‐thick PVD coatings of TiN, Cr, (Cr+TiN), (TiC)N, (TiAl)N onto specimens of stainless steel 321 and titanium alloys of types MILT‐81556A and (10‐2‐3; 4966) on their tensile strength and low‐cycle fatigue resistance when the development of large elastic–plastic strains takes place. The tensile and low‐cycle fatigue tests were conducted under conditions of axial zero‐to‐tension cycle of the stress‐controlled loading on flat 1‐ to 1.5‐mm‐thick specimens in the initial state (uncoated specimens) and after application of a PVD coating, including those after pretensioning or after cyclic prestraining in the low‐cycle fatigue range. The deposition of PVD coatings is found to enhance the characteristics of tensile strength and low‐cycle fatigue resistance in the quasi‐static fracture range. The deposition of PVD coatings on specimens cyclically prestrained to the values of 53–86% of the number of cycles to fracture, changes the cyclic properties of the material and predetermines the fatigue fracture mode only.  相似文献   

12.
Orthogonal experiment design together with the analysis of variance was used to examine the processing parameters (laser power, scan speed, layer thickness and hatch spacing) of selective laser melting (SLM) for superior properties of SLM parts, in which nine groups of specimens of Ti‐6Al‐4V were fabricated. The results clarify that the influence sequence of individual parameter on the porosity is laser power > hatch spacing > layer thickness > scan speed. Ultrasonic fatigue tests (20 kHz) were conducted for the SLMed specimens in high‐cycle fatigue (HCF) and very‐high‐cycle fatigue (VHCF) regimes. The SN data show that the fatigue strength is greatly affected by the porosity: the group with the smallest porosity percentage having the highest fatigue strength in HCF and VHCF regimes. Then, the tests on the validation group were performed to verify the optimal combination of SLM processing parameters. Moreover, the observations by scanning electron microscopy revealed that fatigue cracks initiate at lack‐of‐fusion defects in the cases of surface and internal crack initiation.  相似文献   

13.
The understanding of very high cycle fatigue (VHCF) mechanisms is critical to the development of life prediction approach. For this purpose, high cycle fatigue (HCF) and VHCF properties of a surface‐treated 17Cr‐Ni steel were investigated under axial loading with stress ratio of 0. This steel exhibits the constantly decreasing S‐N characteristics associated with the inclusion‐fisheye induced failure under the HCF and the inclusion‐FGA (fine granular area)‐fisheye induced failure under the VHCF. The cyclic pressing plays an important role in the FGA formation process, but the FGA still can be observed for the stress ratio of zero due to the slight crack closure effect. Two life modelling approaches associated with related failure mechanisms in the HCF and VHCF regimes are proposed based on the agreement between experimental and predicted results.  相似文献   

14.
Observations related to the formation and growth of small cracks ranging from subgrain dimension up to the order of 1 mm are summarized for amplitudes ranging from low cycle fatigue (LCF) to high cycle fatigue (HCF) conditions for polycrystalline metals. Further efforts to improve the accuracy of life estimation which address LCF, HCF and LCF–HCF interactions must consider various factors that are not presently addressed by conventional elastic–plastic fracture mechanics (EPFM) or linear elastic fracture mechanics (LEFM) approaches based on long, self-similar cracks in homogeneous, isotropic materials, nor by conventional HCF design tools such as the εN curve, the SN curve, modified Goodman diagram and fatigue limit.Development of microstructure-sensitive fatigue crack propagation relations relies on deeper understanding of small crack behavior, including (a) interactions with microstructure and lack of constraint for microstructurally small cracks, (b) heterogeneity and anisotropy of cyclic slip processes associated with the orientation distribution of grains, and (c) local mode mixity effects on small crack growth. The basic technology is not yet sufficiently advanced in these areas to implement robust damage tolerant design for HCF. This paper introduces an engineering model which approximates the results of slip transfer calculations related to crack blockage by microstructure barriers; the model is consistent with critical plane concepts for Stage I growth of small cracks, standard cyclic stress–strain and strain–life equations above threshold, and the Kitagawa diagram for HCF threshold behaviors. It is able to correlate the most relevant trends of small crack growth behavior, including crack arrest at the fatigue limit, load sequence effects, and stress state effects.  相似文献   

15.
The paper presents a novel approach towards developing fatigue design curve under combined loading involving low cycle fatigue (LCF) and high cycle fatigue (HCF), in a type 316LN austenitic stainless steel. The total strain life curve used for fatigue design is modified taking into account the effect of varying load history. The methodology relies on the test data obtained to previous studies by authors pertaining to LCF‐HCF interaction using a sequential pattern at 923 K. Modified design curves are generated at 923 K where the effect of varying degree of prior LCF exposure at strain range of 0.12% is accounted for, on HCF.  相似文献   

16.
The effect of frequency on giga‐cycle fatigue properties was investigated in smooth and 0.3 mm‐hole‐notched specimens at three heats (Heats A, B, and C) for a 900 MPa‐class Ti‐6Al‐4V alloy. Fatigue tests were performed at frequencies of 120 Hz, 600 Hz, and 20 kHz using electromagnetic resonance, high‐speed servohydraulic, and ultrasonic fatigue testing machines, respectively. Heats A and B developed internal fractures, and in these cases, frequency effects were negligible. On the other hand, Heat C developed only surface fractures. In this case, high‐frequency tests showed a higher fatigue strength, indicating frequency effects were not negligible. The tests using the notched specimens showed almost no frequency effects regardless of the heat. The frequency effects observed in the cases of surface fracture were believed to be related to a delay in local plastic deformation in response to high‐frequency loading, since temperature increases in these specimens were successfully suppressed. The delay in the plastic deformation was observed to be reduced in the notched specimens because of stress concentration and limitation in the plastic deformation zone. In turn, the significant conclusion of this research is that high‐frequency tests can be applied not only to internal fractures but also to notch problems, but are not applicable to surface fractures of smooth specimens.  相似文献   

17.
Foreign object damage (FOD) has been identified as one of the main life limiting factors for aeroengine blades, with the leading edge of aerofoils particularly susceptible. In this work, a generic edge ‘aerofoil’ geometry was utilized in a study of early fatigue crack growth behaviour due to FOD under low cycle fatigue (LCF), high cycle fatigue (HCF) and combined LCF and HCF loading conditions. Residual stresses due to FOD were analyzed using the finite element method. The longitudinal residual stress component along the crack path was introduced as a nodal temperature distribution, and used in the correction of the stress intensity factor range. The crack growth was monitored using a nanodirect current potential drop (DCPD) system and crack growth rates were correlated with the corrected stress intensity factor considering the residual stresses. The results were discussed with regard to the role of residual stresses in the characterization of fatigue crack growth. Small crack growth behaviour in FODed specimens was revealed only after the residual stresses were taken into account in the calculation of the stress intensity factor, a feature common to LCF, HCF and combined LCF + HCF loading conditions.  相似文献   

18.
Very high cycle fatigue (VHCF) properties of VDSiCr spring steel are investigated with ultrasonic equipment under fully reversed cyclic torsion loading and under cyclic axial loading at load ratios R = –1, R = 0.1 and R = 0.5. Shot‐peened specimens with surface finish similar to valve springs in combustion engines are tested until limiting lifetimes of 1010 cycles. Under cyclic torsion loading, specimens either fail below 106 cycles with crack initiation at the surface or they do not fail. Under cyclic axial loading, failures above 109 cycles were found for all load ratios with crack initiation at the surface or at internal inclusions. Ratio of mean endurance limit (50% failure probability at 1010 cycles) under fully reversed cyclic torsion and cyclic tension‐compression loading is 0.86. Cyclic torsion loading slightly below the endurance limit leads to cyclic softening first followed by cyclic hardening whereas cyclic stability is found for tension‐compression loading. Cyclic torsion reduces surface compression stresses whereas they are hardly affected by cyclic tension‐compression loading. Mean endurance limit at 1010 cycles for R = 0.1 is 61% of the endurance stress amplitude at load ratio R = –1, and for R = 0.5 it is 44% of the tension‐compression endurance limit. Endurance limits for cyclic torsion and cyclic tension‐compression loading are comparable, if effective stress amplitude is used that considers cyclic normal stresses and residual compression stresses at the surface.  相似文献   

19.
In this study, we propose a new two‐scale fatigue model based on continuum damage mechanics. A representative volume element (RVE) consisting of microinclusions and a matrix is constructed. Further, damage‐coupled constitutive equations are derived. The degradation in the mechanical properties of the RVE is determined by the damaged inclusions and matrix using the Mori‐Tanaka scheme. A numerical calculation of the fatigue lives of notched specimens is executed. This new model predicts high‐cycle fatigue (HCF) life more effectively, considering the two‐segment characteristic of S‐N curves of smooth specimens. This study provides novel insights into the evolution mechanism of HCF damage.  相似文献   

20.
In this study, an investigation was conducted on the fatigue performance of Al 7075-T6 plates in the presence of stress raisers (notch, fretting, and a combination of notch and fretting). Fretting situation was induced on the surface of the aluminium plate through steel contacting pads under two different clamping forces of 2 kN and 5.6 kN. The fatigue tests revealed a more dominant effect from stress concentrators originating from geometrical discontinuities such as the tested notch compared to the fretting wear conditions. Therefore, no noticeable differences were found between the fatigue lives of the notched specimens and the combined notch and fretting condition. A finite element stress analyses of the notched model under the contacting fretting pads agreed with the experimental results. The stress distribution at the clamped area introduced tensile stresses at the edge of the contact region, however, the stress at the notch tip was observed to be higher when an axial tensile load was applied to the end of the plate. Fractographic analyses confirmed the presence of cracks initiating from the fretting damaged surface for most of the combined notch and fretting fatigue test specimens particularly at the high cycle fatigue (HCF) zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号