首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Abstract— Universal Display Corp. (UDC), together with its academic partners at Princeton University and the University of Southern California, are developing high‐efficiency electrophosphorescent small‐molecule OLED devices, based on triplet emission. These device systems show good lifetimes, and are well suited for the commercialization of low‐power‐consumption full‐color active‐matrix OLED displays. In this paper we also show how these phosphorescent devices may be driven by low‐cost amorphous‐silicon backplanes, and discuss benefits that could be gained by employing bistable OLED pixels.  相似文献   

2.
Abstract— A new driving scheme for active‐matrix organic light‐emitting diodes (AMOLED) displays based on voltage programming is proposed. While conventional voltage drivers have a trade‐off between speed and accuracy, the new scheme is inherently fast and accurate. Based on the new driving scheme, a fast pixel circuit is designed using amorphous‐silicon (a‐Si) thin‐film transistors (TFTs). As the simulation results indicate, this pixel circuit can compensate the threshold‐voltage shift (VT shift) of the driver transistors. This pixel can be programmed in just 10 μsec, and it can compensate the threshold‐voltage shifts over 5 V with an error rate of less than 5% for a 1 ‐μA pixel current.  相似文献   

3.
Abstract— Active‐matrix organic light‐emitting‐diode (AMOLED) displays are now entering the marketplace. The use of a thin‐film‐transistor (TFT) active matrix allows OLED displays to be larger in size, higher in resolutions and lower in power dissipation than is possible using a conventional passive matrix. A number of TFT active‐matrix pixel circuits have been developed for luminance control, while correcting for initial and electrically stressed TFT parameter variations. Previous circuits and driving methods are reviewed. A new driving method is presented in which the threshold‐voltage (Vt) compensation performance, along with various circuit improvements for amorphous‐silicon (a‐Si) TFT pixel circuits using voltage data, are discussed. This new driving method along with various circuit improvements is demonstrated in a state‐of‐the‐art 20‐in. a‐Si TFT AMOLED HDTV.  相似文献   

4.
We have fabricated a novel type of substrate for organic light‐emitting diodes (OLEDs) to improve the light out‐coupling efficiency. It was fabricated by forming an excellent flat layer using a high‐refractive‐index B2O3‐SiO2‐Bi2O3 frit glass on the light diffusive glass substrate. By using this substrate, we have sufficiently reduced the total internal reflection of OLEDs, and we successfully obtained more than 1.9 times higher light out‐coupling efficiency without spectral changes and viewing angle dependency. Furthermore, we have also successfully demonstrated 50 × 50 mm large‐area white OLEDs with this novel substrate.  相似文献   

5.
A new gate driver has been designed and fabricated by amorphous silicon technology. With utilizing the concept of sharing the noise free block in a single stage for gate driver, dual‐outputs signals could be generated in sequence. By increasing the number of output circuit block in proposed gate driver, number of outputs per stage could also be adding that improves the efficiency for area reduction. Besides, using single driving thin‐film‐transistor (TFT) for charging and discharging, the area of circuit is also decreased by diminishing the size of pulling down TFT. Moreover, the proposed gate driver has been successfully demonstrated in a 5.5‐inch Full HD (1080xRGBx1920) TFT‐liquid‐crystal display panel and passed reliability tests of the supporting foundry.  相似文献   

6.
Abstract— A theoretical model to interpret appearances of the threshold voltage shift in hydrogenated amorphous‐silicon (a‐Si:H) thin‐film transistors (TFTs) is developed to better understand the instability of a‐Si:H TFTs for the driving transistors in active‐matrix organic light‐emitting‐diode (AMOLED) displays. This model assumes that the defect creation at channel in a‐Si:H is proportional to the carrier concentration, leading to the defect density varying along the channel depending on the bias conditions. The model interprets a threshold‐voltage‐shift dependency on the drain‐stress bias. The model predicts the threshold voltage shift stressed under a given gate bias applying the drain saturation voltage is 66% of that with zero drain bias, and it even goes down to 50–60% of that when stressed by applying twice the drain saturation voltage.  相似文献   

7.
Abstract— High‐performance and excellent‐uniformity thin‐film transistors (TFTs) having bottom‐gate structures are fabricated using an amorphous indium‐gallium‐zinc‐oxide (IGZO) film and an amorphous‐silicon dioxide film as the channel layer and the gate insulator layer, respectively. All of the 94 TFTs fabricated with an area 1 cm2 show almost identical transfer characteristics: the average saturation mobility is 14.6 cm2/(V‐sec) with a small standard deviation of 0.11 cm2/(V‐sec). A five‐stage ring‐oscillator composed of these TFTs operates at 410 kHz at an input voltage of 18 V. Pixel‐driving circuits based on these TFTs are also fabricated with organic light‐emitting diodes (OLED) which are monolithically integrated on the same substrate. It is demonstrated that light emission from the OLED cells can be switched and modulated by a 120‐Hz ac signal input. Amorphous‐IGZO‐based TFTs are prominent candidates for building blocks of large‐area OLED‐display electronics.  相似文献   

8.
Abstract— A novel active‐matrix organic light‐emitting‐diode (AMOLED) display employing a new current‐mirror pixel circuit, which requires four‐poly‐Si TFTs and one‐capacitor and no additional signal lines, has been proposed and sucessfully fabricated. The experimental results show that a new current mirror can considerably compensate luminance non‐uniformity and scale down a data current more than a conventional current‐mirror circuit in order to reduce the pixel charging time and increase the minimum data current. Compared with a conventional two‐TFT pixel, the luminance non‐uniformity induced by the grain boundaries of poly‐Si TFTs can be decreased considerably from 41% to 9.1%.  相似文献   

9.
Abstract— Organic light‐emitting‐device (OLED) devices are very promising candidates for flexible‐display applications because of their organic thin‐film configuration and excellent optical and video performance. Recent progress of flexible‐OLED technologies for high‐performance full‐color active‐matrix OLED (AMOLED) displays will be presented and future challenges will be discussed. Specific focus is placed on technology components, including high‐efficiency phosphorescent OLED technology, substrates and backplanes for flexible displays, transparent compound cathode technology, conformal packaging, and the flexibility testing of these devices. Finally, the latest prototype in collaboration with LG. Phillips LCD, a flexible 4‐in. QVGA full‐color AMOLED built on amorphous‐silicon backplane, will be described.  相似文献   

10.
We propose an in‐pixel temperature sensor using low‐temperature polycrystalline silicon and oxide (LTPO) thin‐film transistor (TFTs) for high‐luminance active matrix (AM) micro‐light‐emitting diode (LED) displays. By taking advantage of the different off‐current characteristics of p‐type LTPS TFTs and n‐type a‐IGZO TFTs under temperature change, we designed and fabricated a temperature sensor consists of only LTPO TFTs without additional sensing component or material. The fabricated sensor exhibits excellent temperature sensitivity of up to 71.8 mV/°C. In addition, a 64 × 64 temperature sensor array with 3T sensing pixel and integrated gate driver has also been fabricated, which demonstrates potential approach for maxing out the performance of high‐luminance AM micro‐LED display with real‐time in‐pixel temperature monitoring.  相似文献   

11.
A new subject‐specific course on thin‐film transistor (TFT) circuit design is introduced, covering related knowledge of display technologies, TFT device physics, processing, characterization, modeling and circuit design. A design project is required for students to deepen the understanding even more and get hands‐on design experience. This course can be an intense 1‐week course to offer a full training of design engineers in an organized way to meet the ever‐increasing needs in display industry for TFT circuit design specialists. It can also be organized in one semester for electrical engineering Master's and Ph.D. students.  相似文献   

12.
We developed a novel vertically integrated, double stack oxide thin‐film transistor (TFT) backplane for high‐resolution organic light‐emitting diode (OLED) displays. The first TFT layer is bulk‐accumulation mode, and the second TFT layer is a single gate with back‐channel etched structure. The extracted mobilities and threshold voltages are higher than 10 cm2/Vs and 0 ~ 1 V, respectively. Both TFTs are found to be extremely stable under the bias and temperature stress. The gate driver with width of 530 μm and a pitch of 18.6 μm was developed, exhibiting well shifted signal up to the last stage of 900 stages without output degradation, which could be used for 1360 ppi TFT backplane.  相似文献   

13.
A hydrogenated amorphous silicon (a‐Si:H) thin‐film transistor (TFT) gate driver with multioutputs (eight outputs per stage) for high reliability, 10.7‐inch automotive display has been proposed. The driver circuit is composed of one SR controller, eight driving TFTs (one stage to eight outputs) with bridging TFTs. The SR controller, which starts up the driving TFTs, could also prevent the noise of gate line for nonworking period. The bridging TFT, using width decreasing which connects between the SR controller and the driving TFT, could produce the floating state which is beneficial to couple the gate voltage, improves the driving ability of output, and reaches consistent rising time in high temperature and low temperature environment. Moreover, 8‐phase clocks with 75% overlapping and dual‐side driving scheme are also used in the circuit design to ensure enough charging time and reduce the loading of each gate line. According to lifetime test results, the proposed gate driver of 720 stages pass the extreme temperature range test (90°C and ?40°C) for simulation, and operates stably over 800 hours at 90°C for measurement. Besides, this design is successfully demonstrated in a 10.7‐inch full HD (1080 × RGB×1920) TFT‐liquid‐crystal display (LCD) panel.  相似文献   

14.
Abstract— We have successfully demonstrated a 4‐in. full‐color active‐matrix OLED display based on amorphous‐Si (a‐Si) TFT technology. With improvements in the TFT manufacturing process and structure, a‐Si TFTs provide abundant capability to drive OLEDs. This demonstration clearly shows the possibility of using a‐Si TFTs as driving backplanes in the manufacture of full‐color AMOLEDs.  相似文献   

15.
We studied the light extraction efficiencies of white organic light‐emitting diodes with a light‐out‐coupling layer by simulations and experiments. The light extraction efficiencies estimated by the simulation were confirmed to agree well with those measured by the experiments. Moreover, we successfully obtained the high light extraction efficiency (ηOC) of 69%.  相似文献   

16.
Abstract— Short‐range uniformity and bias‐temperature (BT) instability of ZnO TFTs with SiOx/SiNx stacked gate insulators which have different surface treatments have been investigated. The short‐range uniformity of ZnO TFTs was drastically improved by N2O plasma treatment of the gate insulator. The variation in the gate voltage where a drain current of 1‐nA flows (Vgs at an Ids of 1 nA) was dramatically reduced from ±1.73 V to ±0.07 V by N2O plasma treatment of the gate insulator. It was clarified that the variations in the subthreshold characteristics of the ZnO TFTs could be reduced by N2O plasma treatment of the gate insulator due to a decrease in the variation of trap densities in deep energy levels from 0.9–2.0 × 1017 to 1.2–1.3×1017 cm?3‐eV?1. From the BT stress tests, a positive shift of Vgs at an Ids of 1 nA could be reduced by N2O plasma treatment of the gate insulator due to a decrease in the charge traps in the gate insulator. When the gate‐bias stress increases, state creation occured in the ZnO TFTs in addition to the charge trapping in the gate insulator. However, N2O plasma treatment of the gate insulator has little effect on the suppression of the state creation in ZnO TFTs under BT stress. The surface treatment of the gate insulator strongly affects the short‐range uniformity and the BT instability of Vth in the ZnO TFTs.  相似文献   

17.
Abstract— A new voltage‐addressed pixel using a multiple drive distribution has been developed to improve, in a simple way, the brightness uniformity of active‐matrix organic light‐emitting‐diode (AMOLED) displays. Moreover, circuits were realized using microcrystalline‐silicon (μc‐Si) films prepared at 600°C using a standard low‐pressure CVD system. The developed p‐channel TFTs exhibit a field‐effect mobility close to 6 cm2/V‐sec. The experimental results show that the proposed spatial distribution of driving TFTs improves the uniformity of current levels, in contrast to the conventional two‐TFT pixel structure. Backplane performances have been compared using circuits based on μc‐Si and furnace‐annealed polysilicon materials. Finally, this technology has been used to make an AMOLED demonstration unit using a top‐emission OLED structure. Thus, by combining both an μc‐Si active‐layer and a current‐averaging driver, an unsophisticated solution is provided to solve the inter‐pixel non‐uniformity issue.  相似文献   

18.
Abstract— A key performance attribute for widespread commercialization of OLED technology is achieving maximum power efficiency along with color chromaticity and operational lifetime. Towards this goal, phosphorescent‐OLED (PHOLED) devices have demonstrated potential. Recent PHOLED device results show both excellent device efficiencies and long lifetimes towards the commercialization of low power consumption, full color, passive‐ and active‐matrix (both polysilicon and amorphous‐silicon backplane technologies) OLED displays.  相似文献   

19.
Abstract— In pursuit of the further enhancement of the luminance and efficiency of organic light‐emitting devices (OLEDs), it is worthy of exploring what benefits could be obtained by combining two luminance‐enhancement techniques, i.e., microcavity and tandem OLEDs. Furthermore, a deeper understanding of the optics in tandem OLEDs will be useful for the design and optimization of tandem OLEDs. In this paper, the optical characteristics of noncavity and microcavity tandem OLEDs are theoretically and experimentally investigated. By the use of rigorous electromagnetic modeling of OLEDs, the radiation characteristics of tandem OLEDs as a function of device structures are analyzed and correspondingly, the guidelines for optimizing the performance of tandem devices are suggested. By making use of the analytical results, it is shown that with well‐designed microcavity conditions and device structures, a five‐fold enhancement in luminance in the normal direction can be achieved with cavity‐tandem devices having only two emitting units. A very high efficiency of 200 cd/A for a rather broad brightness range of 100–4000 nits is demonstrated with a phosphorescent cavity two‐unit device.  相似文献   

20.
Organic light‐emitting device (OLED) technology has recently been shown to demonstrate excellent performance and cost characteristics for use in numerous flat‐panel‐display (FPD) applications. Universal Display Corp. (UDC), together with its academic partners at Princeton University and the University of Southern California, are developing high‐efficiency electrophosphorescent OLEDs, based on triplet emission. These material systems show good lifetimes, and are well suited for the commercialization of low‐power‐consumption full‐color active‐matrix OLED displays. Their very high conversion efficiencies may even allow them to be driven by amorphous‐silicon backplanes, and in this paper we consider design guidelines for an amorphous‐silicon pixel to minimize display non‐uniformities due to threshold voltage variations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号