首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In situ polymerization of styrene was conducted in the presence of expanded graphite obtained by rapid heating of a graphite intercalation compound (GIC), to form a polystyrene–expanded graphite conducting composite. The composite showed excellent electrically conducting properties even though the graphite content was much lower than in normal composites. The transition of the composite from an electrical insulator to an electrical semiconductor occurred when the graphite content was 1.8 wt%, which is much lower than that of conventional conducting polymer composites. TEM, SEM and other studies suggest that the graphite was dispersed in the form of nanosheets in a polymer matrix with a thickness of 10–30 nm, without modification of the space between carbon layers and the structure of the graphite crystallites. The composite exhibited high electrical conductivity of 10?2 S cm?1 when the graphite content was 2.8–3.0 wt%. This great improvement of conductivity could be attributed to the high aspect ratio (width‐to‐thickness) of the graphite nanosheets. The rolling process strongly affected the conductivity and the mechanical properties of the composite. © 2001 Society of Chemical Industry  相似文献   

2.
An in situ polymerization was conducted in the presence of expanded graphite obtained by rapid heating of the graphite intercalation compound (GIC) to form a polymer/expanded graphite conducting composite. Study showed that the graphite was dispersed in the form of nanosheets in the polymer matrix. The transition from an electrical insulator to an electrical semiconductor for the composite occurred when the expanded graphite content was 1.8 wt %, which was much lower than that of conventional conducting polymer composite. The composite exhibited high electrical conductivity of 10−2 S/cm when the graphite content was 3.0 wt %. This great improvement of conductivity could be attributed to the high aspect ratio (width-to-thickness) of the graphite nanosheets. Study suggested that extensive rolling of the blend greatly affected the conductivity of the composite. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 2506–2513, 2001  相似文献   

3.
新型导电填料——纳米石墨微片   总被引:4,自引:1,他引:4  
张洪艳  王海泉  陈国华 《塑料》2006,35(4):42-45
经过超声波粉碎,可将膨胀石墨制备成一种新型导电填料——纳米石墨微片。它的厚度为纳米,直径在微米范围,具有很大的形状比。将纳米石墨微片分散于聚乙烯、聚苯乙烯、聚甲基丙烯酸甲酯、尼龙等聚合物基体中制备导电复合材料,其渗滤阀值远低于一般的导电填料复合体系。纳米石墨微片有望在导电材料、电磁屏蔽材料、电加热材料等领域得到应用。  相似文献   

4.
A novel process was employed to fabricate a polymer/expanded graphite nanocomposite by modifying the conducting filler expanded graphite (EG) with unsaturated polyester resin (UPR). The modified expanded graphite (MEG) was prepared from EG in which the graphite nanosheets, already present in EG, were wrapped and isolated by the UPR during processing. The as‐prepared MEG was reduced to powder form to improve its dispersion in the matrix. MEG powders were embedded into a high‐density polyethylene (HDPE) matrix via melt‐extrusion in a single‐screw extruder to prepare the conducting composite. The as‐prepared HDPE/EG conducting composite exhibited a low percolation threshold of ~5.7 wt% due to the high aspect ratio of graphite nanosheets. Mechanical properties such as the tensile and impact strength were also studied. Scanning electron microscopy was used to characterize the microstructure of EG, MEG powder and the resulting nanocomposites. Copyright © 2006 Society of Chemical Industry  相似文献   

5.
Highly conductive polypyrrole/graphite nanosheets/Gd3+ (PPy/nanoG/Gd3+) composites are fabricated via in situ polymerization using p‐toluenesulfonic acid as a dopant and FeCl3 as an oxidant. The effects of the graphite nanosheets and Gd3+ loading on the electrical conductivity are investigated. The maximum conductivity of PPy/nanoG/Gd3+ composites about 17.86 S/cm found with 3 wt% graphite nanosheets and 6 wt% Gd3+ at room temperature. The results showed that the high‐aspect‐ratio structure of graphite nanosheets played an important role in forming a conducting network in PPy matrix. Thermal gravimetric analysis demonstrates an improved thermal stability of PPy in the PPy/nanoG/Gd3+ composites. The microstructures of PPy/nanoG/Gd3+ are evidenced by the SEM and TEM examinations. POLYM. COMPOS., © 2011 Society of Plastics Engineers.  相似文献   

6.
An easy process for the synthesis of poly(methyl methacrylate)/Ce(OH)3, Pr2O3/graphite nanosheet (PMMA/Ce(OH)3, Pr2O3/NanoG) composite was developed. Graphite nanosheets (NanoG) were prepared by treating the expanded graphite with sonication in aqueous alcohol solution. The PMMA/Ce(OH)3, Pr2O3/NanoG composites were prepared via in situ polymerization of MMA monomer in the presence of graphite nanosheets and Ce(OH)3, Pr2O3 through reverse micelle template, in which the methyl methacrylate was designated as the oily phase. The composites were then dispersed with chloroform and coated on glass slides to form films. Scanning and transmission electron microscopy were used to characterize the structure and dispersion of the graphite nanosheets and the composites. The results showed that the high-aspect-ratio structure of the nanosheets played an important role in forming a conducting network in the PMMA matrix. From thermogravimetric analysis, the introduction of graphite nanosheets and inorganic nanopartices exhibited a beneficial effect on the thermal stability of PMMA.  相似文献   

7.
Application of graphene requires a high-yield, low-cost, scalable production method, but it remains highly challenging. We here report a water-phase technique to produce few-defect graphene nanosheets (FGS) with a high exfoliation yield (92%), based on the chemically expanded graphite with ultrahigh specific surface areas, and demonstrate the application in graphene-polymer nanocomposites. The exfoliated FGS has low degree of oxidation and preserves good mechanical and electrical properties, revealing promising potential for improving comprehensive properties of polymer composites. When 0.5 wt% FGS was incorporated to poly(methyl methacrylate) (PMMA), the 5% weight loss temperature and storage modulus increase by 87°C and 21%, respectively, relative to the neat polymer. With increasing the content of FGS to 4.6 wt%, the glass transition temperature of the composite increases by 25°C. In addition, the composites show a percolation threshold as low as 0.25 vol% and excellent electrical conductivity (50 S/m for 2.7 vol% FGS-PMMA composite).  相似文献   

8.
X.S. Du  Y.Z. Meng  A.S. Hay 《Polymer》2004,45(19):6713-6718
An effective method for the preparation of poly(4,4′-oxybis(benzene)disulfide)/graphite nanosheet composites via in situ ring-opening polymerization of macrocyclic oligomers were reported. Completely exfoliated graphite nanosheets were prepared under the microwave irradiation followed by sonication in solution. The nanocomposites were fabricated via in situ melt ring-opening polymerization of macrocyclic oligomers in the presence of graphite nanosheets. The graphite nanosheets and resulted poly(arylene disulfide)/graphite nanocomposites were characterized with field emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM), tensile tester and electrical conductivity measurements. Compared with pure polymer, the electrical conductivity of the poly(arylene disulfide)/graphite nanocomposites were dramatically increased and had a value of about 10−3 S/cm for the nanocomposite containing 5 wt% graphite. The nanocomposites exhibit as both high performance polymeric material and electrically conductive material. Therefore, they show potential applications as high temperature conducting materials.  相似文献   

9.
《Polymer Composites》2017,38(12):2822-2828
Silver plating graphite nanosheet (Ag‐NanoG) prepared by electroless plating method with expanded graphite as starting material is an effective approach to increase thermal conductivity of the filler. Herein, a novel thermal conductive composite was prepared by using Ag‐NanoG as thermal conductive filler and epoxy resin as the polymer matrix. The microstructures of NanoG and Ag‐NanoG were characterized by means of scanning electron microscopy, X‐ray powder diffraction and then the thermal conductivity, impact strength, and thermal stability of the composite were investigated. The results showed that the Ag‐NanoG was successfully obtained and it can be homogeneously dispersed in the epoxy resin. The thermal conductivity of composite increased from 0.328 to 1.847 W/m K with 4 wt% Ag‐NanoG filler content. Moreover, the composite exhibited excellent thermal stability and mechanical property. POLYM. COMPOS., 38:2822–2828, 2017. © 2015 Society of Plastics Engineers  相似文献   

10.
Today, we stand at the threshold of exploring carbon nanotube (CNT) based conducting polymer nanocomposites as a new paradigm for the next generation multifunctional materials. However, irrespective of the reported methods of composite preparation, the use of CNTs in most polymer matrices to date has been limited by challenges in processing and insufficient dispersability of CNTs without chemical functionalization. Thus, development of an industrially feasible process for preparation of polymer/CNT conducting nanocomposites at very low CNT loading is essential prior to the commercialization of polymer/CNT nanocomposites. Here, we demonstrate a process technology that involves in situ bulk polymerization of methyl methacrylate monomer in the presence of multi‐wall carbon nanotubes (MWCNTs) and commercial poly(methyl methacrylate) (PMMA) beads, for the preparation of PMMA/MWCNT conducting nanocomposites with significantly lower (0.12 wt% MWCNT) percolation threshold than ever reported with unmodified commercial CNTs of similar qualities. Thus, a conductivity of 4.71 × 10?5 and 2.04 × 10?3 S cm?1 was achieved in the PMMA/MWCNT nanocomposites through a homogeneous dispersion of 0.2 and 0.4 wt% CNT, respectively, selectively in the in situ polymerized PMMA region by using 70 wt% PMMA beads during the polymerization. At a constant CNT loading, the conductivity of the composites was increased with increasing weight percentage of PMMA beads, indicating the formation of a more continuous network structure of the CNTs in the PMMA matrix. Scanning and transmission electron microscopy studies revealed the dispersion of MWCNTs selectively in the in situ polymerized PMMA phase of the nanocomposites. Copyright © 2012 Society of Chemical Industry  相似文献   

11.
Three sets of expanded graphite‐filled polymers, having three different particle sizes, were reinforced with 1–5% by weight. The structural, mechanical, electrical, and thermal properties of these composites were studied and compared. After dispersion, the particles were reduced to nanometer size through exfoliation, sonication, and high‐shear strain rate mixing, which further breaks and delaminates them. In addition, scanning electron microscope characterizations were performed. The expanded graphite‐filled polymer material could be tailored to be high conducting. Compared with the pure polymer, the polymers filled with 5 wt% expanded graphite have seen a significant reduction in electrical resistivity by orders. The thermal expansion coefficient and water absorption for the weight containing 5 wt% expanded graphite has also been drastically improved, decreasing with the weight percentage of graphite content. Compression and impact tests were conducted. The influence of dispersion on the material behavior was studied. Some fracture modes associated with the layered microstructures of the graphite nanosheets were observed. POLYM. COMPOS., 2011. © 2010 Society of Plastics Engineers  相似文献   

12.
Electrically conductive polymer composites for bipolar plate were fabricated by two‐step compression molding technique. Raw materials consisted of natural graphite flakes (G), expanded graphite (EG), carbon black (CB), and phenol resin (PF). The G/EG/CB/PF composites were first compressed at a temperature lower than curing point (100°C) and then cured at a high temperature above curing point (150°C) and high pressure (10 MPa). Results showed that G and EG are oriented in the direction parallel to the composite plate surface. CB is dispersed not only in the phenol resin matrix but also in the packing and porous space of G and EG. The addition of EG and CB significantly increases number of the electrical channels and thus enhances the electrical conductivity of the composite. Under optimal conditions, electrical conductivity and flexural strength of the composite were 2.80 × 104 S/m and 55 MPa, respectively, suggesting that the dipolar plates prepared by two‐step compression molding technique are adequate to meet the requirement of proton exchange membrane fuel cells. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2296–2302, 2013  相似文献   

13.
Supercritical carbon dioxide, saturated with pyrrole, was brought into contact with oxidant‐impregnated films of poly(chlorotrifluoroethylene) (PCTFE), crosslinked poly(dimethylsiloxane) (PDMS), poly(methyl methacrylate) (PMMA), and porous crosslinked polystyrene (PS) in order to form conducting composites via the in situ polymerization of pyrrole. The two nonporous hosts—PCTFE and crosslinked PDMS—did not form conducting composites with polypyrrole (PPy). On the other hand, the electrical conductivity of the PPy composites with carbon dioxide‐swollen PMMA and porous PS ranged from 1.0 × 10?4 S/cm to 3.0 × 10?5 S/cm. In these two cases, the level of pyrrole polymerized on the surface or in the pores of the host polymer was sufficient to attain the interconnected conducting polymer networks necessary for electrical conductivity. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1113–1116, 2003  相似文献   

14.
A new process for the dispersion of graphite in the form of nanosheets in a polymer matrix was developed via in situ polymerization of monomer at the presence of sonicated expanded graphite during sonication. Graphite nanosheets prepared via powdering the expanded graphite had a thickness ranging 30-80 nm and a diameter ranging 0.5-20 μm and was an excellent nanofiller for the fabrication of polymer/graphite conducting nanocomposite. The process fabricated electrically conducting polystyrene/graphite nanosheet nanocomposite films with much lower percolation threshold and much higher conductivities than those of composites made by conventional methods.  相似文献   

15.
Synthesis and characterization of composite polymer electrolytes based on lithium bis(oxalato)borate (LiBOB) and a host matrix of nanoparticulate anatase dispersed in phase‐separated poly(vinylidenefluoride) (PVdF)‐poly(vinylchloride) (PVC) are described. Ethylene carbonate (EC) and diethyl carbonate (DEC) were used as plasticizers in the membranes, and nanoparticulate TiO2 (anatase) was used as the filler. The membranes were characterized by SEM, XRD, and a.c. impedance measurements. A membrane with 2.5 wt% filler exhibited a conductivity of 5.43 × 10?4 S.cm?1 at ambient temperature. Filler levels above 2.5 wt% increased the crystallinity of the membranes, rendering them less conducting. Activation energy and coherent length of the composite polymer electrolytes have also been calculated. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers.  相似文献   

16.
A carbon nanotube (CNT)/poly(methyl methacrylate) (PMMA)/ultrahigh molecular weight polyethylene (UHMWPE) composite containing a double‐segregated structure was formalized by means of a facile mechanical mixing technology. In the composite, the CNTs were decorated on the surfaces of PMMA granules, and the CNTs decorated granules formed the continuous segregated conducting layers at the interfaces between UHMWPE particles. Morphology observations confirmed the formation of a specific double‐segregated CNT conductive network, resulting in an ultralow percolation threshold of ~0.2 wt %. The double‐segregated composite containing only 0.8 wt % CNT loading exhibited a high electrical conductivity of ~0.2 S m?1 and efficient electromagnetic shielding effectiveness of ~19.6 dB, respectively. The thermal conductivity, temperature‐resistivity behaviors, and mechanical properties of the double‐segregated composites were also studied. This work provided a novel conductive network structure to attain a high‐performance conducting polymer composite at low filler loadings. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39789.  相似文献   

17.
A poly(methyl methacrylate)‐intercalated graphite oxide/poly(methyl methacrylate) nanocomposite was prepared by emulsion polymerization of methyl methacrylate in the presence of graphite oxide (GO). GO was synthesized by the oxidization of natural graphite powder with KMnO4 in concentrated sulfuric acid. The functional groups and microstructure of the oxidized graphite and the composite were carefully characterized by use of X‐ray diffraction, infrared, transmission electron microscopy, and elemental analysis. The electrical conductivity and mechanical properties were also measured. Polym. Eng. Sci. 44:2335–2339, 2004. © 2004 Society of Plastics Engineers.  相似文献   

18.
19.
An ionic liquid 1‐methyl‐3‐[2‐(methacryloyloxy)ethyl]imidazolium bis(trifluoromethane sulfonylimide) (MMEIm‐TFSI) was synthesized and polymerized. Composite polymer electrolytes based on polymeric MMEIm‐TFSI (PMMEIm‐TFSI) and poly[(methyl methacrylate)‐co‐(vinyl acetate)] (P(MMA‐VAc)) were prepared, with lithium bis(trifluoromethane sulfonylimide) (LiTFSI) as target ions (Li+). DSC/TGA analysis showed good flexibility and thermal stability of the composite electrolyte membranes. The AC impedance showed that the ionic conductivity of the electrolytes increased with PMMEIm‐TFSI up to a maximum value of 1.78 × 10?4 S cm?1 when the composition was 25 wt% P(MMA‐VAc)/75 wt% PMMEIm‐TFSI/30 wt% LiTFSI at 30 °C. The composite electrolyte membrane (transmittance ≥ 90%) can also be used as the ion‐conductive layer material for electrochromic devices, and revealed excellent colorization performance. Copyright © 2011 Society of Chemical Industry  相似文献   

20.
This study focuses on the electrical properties of polycarbonate (PC)/poly(ε‐caprolactone) (PCL)‐multiwall carbon nanotube (MWCNT) nanocomposites. MWCNTs were incorporated into thermoplastic PC matrix by simple melt blending using biodegradable PCL based concentrates with MWCNT loadings (3.5 wt%). Because of the lower interfacial energy between MWCNT and PCL, the nanotubes remain in their excellent dispersion state into matrix polymer. Thus, electrical percolation in PC/PCL‐MWCNT nanocomposites was obtained at lower MWCNT loading rather than direct incorporation of MWCNT into PC matrix. AC and DC electrical conductivity of miscible PC/PCL‐MWCNT nanocomposites were studied in a broad frequency range, 101?106 Hz and resulted in low percolation threshold (pc) of 0.14 wt%, and the critical exponent (t) of 2.09 from the scaling law equation. The plot of logσDC versus p?1/3 showed linear variation and indicated the existence of tunneling conduction among MWCNTs. At low MWCNT loading, the influence of large polymeric gaps between conducting clusters is the reason for the frequency dependent electrical conductivity. Transmission electron microscopy and field emission scanning electron microscopy showed that MWCNTs were homogeneously dispersed and developed a continuous interconnected network path throughout the matrix phase and miscibility behavior of the polymer blend. POLYM. ENG. SCI., 54:646–659, 2014. © 2013 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号