首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new strategy for in situ polymerization was developed to prepare the polyethylene nanocomposites, in which a nickel α-diimine late-transition-metal catalyst supported on the AlEt3-activated organoclay was adopted to initiate the ethylene polymerization and to provide the reinforcement materials after the polymerization. It was found that the polymerization conditions such as reaction time, Al/Ni molar ratio, and reaction temperature affected the polymerization activity and the clay loading. The nanoscale dispersion of the clay layers in the polyethylene matrix was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). From the thermogravimetric analyses (TGA), it was found that the decomposition temperature of the nanocomposite with the organoclay of 11.91 wt% could be 46.8 °C higher than that of pure polyethylene when 30% weight loss was selected as a measuring point, showing enhanced thermal oxidation stability of this kind of polyolefin nanocomposites.  相似文献   

2.
Polyethylene/organo-montmorillonite clay (org-MMT) nanocomposites were prepared utilizing PP-g-MA as a compatibilizer by melt intercalation method. In order to increase the miscibility of polyethylene (PE) with nanoparticle surface at firs, a primary masterbatch consist of compatibilizer and org-MMT was prepared then, this compound was melt intercalated with PE to synthesis the PE/org-MMT nanocomposites. In this study, the presence of commercial low density polyethylene in Nanocomposites structure and also the effect of process parameters such as: amount of nanoparticles, mixing rate and mixing time on nanocomposite structure and properties have been investigated. The X-ray diffraction (XRD) and transmission electron microscopy (TEM) results showed that the interlayer distance of nanoparticle layers increased and a partially intercalated structure was prepared by melt intercalation method. Interaction between polyethylene chains and nanoparticle layers could be improved if the control of above parameters causes to penetrate the chains into nanoclay layers; by an optimization, this effect could improve the physical and mechanical properties. The DSC data revealed that melting temperature has slowly increased and crystalinity has lightly decreased. Consequently we can claim the thermal properties of LDPE/clay nanocomposite did not considerably change with clay content. A rise in the mechanical properties such as yield stress and modulus was observed by tension test; by addition of 5% clay content the tensile strength increased about 7%, the tensile modulus enhanced about 60% and the yield stress increased about 16% in comparison with the pure LDPE.  相似文献   

3.
HDPE nanocomposites containing 2.5, 5 and 10 wt.% of non-modified and modified clays (NMC and MC) were prepared by melt extrusion in a twin screw extruder. Compression molded samples were prepared. Transmission electron microscopy (TEM) indicated a partial intercalation of the modified clay nanofiller within the HDPE matrix comparing to that of non-modified clay. The moduli of nanocomposites increased with increase in nanofiller concentration; but this increase was greater in the low frequency region. The non-modified clay had a greater increase in the elastic behavior, while the modified clay increased viscose behavior because of more interactions with the matrix and partial intercalation. The rheological behaviors of both HDPE/NMC and HDPE/MC nanocomposites are more sensitive to nanoparticles’ concentration at low frequencies. The HDPE/MC nanocomposites showed semi-circle shapes comparing to HDPE/NMC nanocomposites. While the Cole–Cole plot of HDPE/NMC nanocomposite had more departure of semi-circle shape. The agglomerated particles could concentrate the imposed stress so the yield stress reached at lower shear rates comparing to pure HDPE and HDPE filled 2.5 wt.% NMC nanocomposite. Study of suspension models showed that the Eilers-Van Dijck and Einsten models fitted to almost experimental data satisfactorily.  相似文献   

4.
A new benzimidazolium derivative, the benzimidazolium-N,N′-hexadecane-2-hydroxy-ethyl bromide (Bz) featuring two geminal hexadecyl hydrophobic buttress has been synthesized and used for the functionalization of sodium montmorillonite (MMT-Na) via cationic exchange process. The resulting benzimidazolium-modified MMT (MMT-Bz) exhibits a large d-spacing of 3 nm between silicate layers and shows a high thermal stability compared to the commonly used clay modified alkyl ammonium salts (cloisite 20A and cloisite 20B). MMT-Bz was incorporated in high density polyethylene (HDPE) matrix via melt mixing method to produce HDPE/MMT-Bz nanocomposites. The microstructure and the morphology of these nanocomposites were studied by X-ray diffraction (XRD) and scanning electronic microscopy (SEM). The dispersion state of the organoclay within HDPE was monitored by UV–Vis spectroscopy and melt rheology. A more homogeneous dispersion or a greater content of the MMT-Bz in the matrix produced stronger solid-like and non-terminal behavior in the nanocomposites. Tensile properties and thermal stability were evaluated and discussed on the basis of the amount of clay incorporated within the nanocomposites. The intercalated structure in the nanocomposites, resulting from both the better dispersion/distribution of clay nano-platelets and their strong interaction with the polymer chains, provides the driving force to significantly enhance the HDPE properties.  相似文献   

5.
Dodecyl sulfate (DS), one kind of sulfate anion, was intercalated in the interlayer space between CoAl layered double hydroxide (CoAl-LDH) layers, and then polyurethane (PU) based nanocomposites were prepared by in situ intercalation polymerization with different amounts of the organo-modified CoAl-LDH. An exfoliated dispersion of CoAl-LDH layers in PU matrix was verified by the disappearance of the (0 0 3) reflection of the XRD results when the LDH loading was less than 2.0 wt%. Tensile testing indicated that excellent mechanical properties of PU/LDH nanocomposites were achieved. The weak alkaline catalysis of DS to polyurethane chains, combined with the dehydration and structural degradation of the LDH below 300 °C, accounted for the process of proceeded degradation as shown in TGA results. The real-time FTIR revealed that the as-prepared nanocomposites had a slower thermo-oxidative rate than neat PU from 160 °C to 340 °C, probably due to the barrier effect of LDH layers. These results suggested potential applications of CoAl-LDH as a promising flame retardant in PUs.  相似文献   

6.
Polyampholytes superabsorbent nanocomposites with excellent gel strength   总被引:1,自引:0,他引:1  
A series of novel polyampholyte superabsorbent nanocomposites with excellent gel strength were synthesized by in situ solution polymerization in aqueous solution. Acrylic acid and acryloyloxyethyl trimethyl ammonium chloride (DAC) were employed as ionic monomers and montmorillonite (MMT) was used as inorganic component. The addition of cationic component could supply the positive charge in the network of nanocomposite and promote the formation of nanostructure of composites due to the interaction between DAC and clay platelets. The performance of polyampholyte nanocomposites were investigated and the result showed that the gel strength of nanocomposite hydrogel in distilled water and 0.9 wt% NaCl solution could reach 198.85 and 204.23 mJ/g, respectively, which were 13 times of the gel strength of matrix. The investigation of swelling behaviors showed that the nanocomposites had particular swelling behaviors of polyampholytes hydrogel in solution with different pH values and concentration of NaCl.  相似文献   

7.
Polypyrrole/nano-exfoliated graphite composites were synthesized using an in situ intercalation polymerization of pyrrole into the layers of expanded graphites. The morphologies and nanostructures of obtained composites were characterized by field emission scanning electron microscopy, transmission electron microscopy and X-ray diffraction analysis. Results showed that the in situ intercalation polymerization of pyrrole cation into the layers of expanded graphites could separate graphite into nano-exfoliated graphite sheets. The interactions between polypyrrole and the graphite sheet were also confirmed by Fourier transformed infrared spectroscopy. The fabricated nanocomposites polypyrrole/nano-exfoliated graphite-1.5 showed obvious improvement in microwave absorption compared with those of the polypyrrole or the expanded graphite itself. With a thickness of 2.7 mm, the optimal absorption peak reached −48 dB at 13.4 GHz and the bandwidth corresponding to the reflection loss at −10 dB was 3.4 GHz (from 13.2 to 16.6 GHz). The minimum RL reached −34 dB with a thickness of 2.5 mm for Polypyrrole/nano-exfoliated graphite-1.5. Moreover, it could be observed that the absorption bandwidth with RL below −10 dB was obtained in the frequency range of 5–18 GHz for polypyrrole/nano-exfoliated graphite-1.5 with a thickness of 2–5 mm. This would open a path toward the fabrication of microwave absorption materials of light-weight.  相似文献   

8.
Biobased materials developed in conjunction with nanotechnology are poised to achieve a significant presence in the world market for polymeric materials. An example of an engineering polymer that can be partially derived from biomass is poly(trimethylene terephthalate). One of its raw materials, 1,3-propanediol, can be derived from corn sugar. In the present study we used a fully petroleum-based resin as an analog to the biobased material. Five organically modified montmorillonite clays were characterized via moisture uptake studies to determine the hydrophilic/hydrophobic nature of their surfaces. Nanocomposites were produced via melt compounding followed by injection molding with 5 wt.% organoclay loading to determine which modification gave the best balance of mechanical and thermal properties. It was found that the tensile modulus increased by up to 35% and the tensile stress at break by up to 50%. The heat deflection temperature of the nanocomposites versus the neat polymer increased by up to 33 °C. From these results, one organoclay was selected for detailed study over a loading range of 0–5 wt.%. The testing revealed that over this range, changes in the mechanical properties may go through a maximum (e.g. strength) or increase/decrease to a plateau (e.g. modulus, elongation at break). X-ray diffraction and transmission electron microscopy were also used to characterize the nature of the organoclay/polymer interaction. Biobased poly(trimethylene terephthalate)/organoclay nanocomposites are expected to exhibit properties similar to the petroleum-based resin.  相似文献   

9.
High performance poly(etherimide) (PEI)-based nanocomposites (PNs) with multi-walled carbon nanotubes (MWCNT) were obtained via melt mixing. To achieve this, PEI was mixed with a well-dispersed commercial poly(butylene terephthalate) (PBT)/MWCNT master-batch in an attempt to transfer the dispersed MWCNTs to a PEI matrix. A broad and homogeneous dispersion of MWCNTs throughout the PEI-based matrix was obtained. The electrical percolation threshold (pc) was reached at only 1 wt.% MWCNT. This pc showed a power law dependence of conductivity on filler concentration, with a critical exponent of 1.92, which indicates that a three dimensional percolated structure was achieved. The glass transition temperature and the pressure at the output end of the extruder decreased when the master-batch was added, indicating that the processability of PEI was improved. In addition to this, the modified PEI-based PNs presented ductile behaviour and an ameliorated (12% with 5 wt.% MWCNT) elastic modulus compared with pure PEI.  相似文献   

10.
Two organic modified clays (Cloisite®30B (CL30B) and PCL/Cloisite®30B masterbatch (MB30B)) were used to improve the mechanical properties of polycarbonate (PC)/poly (styrene-co-acrylonitrile) (SAN) blends. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) measurements of the melt blended nanocomposites revealed that partially exfoliated and partially degraded structure was obtained and the clay platelets were located mostly in the SAN phase and at the two-phase boundary. Dispersion of the clay platelets is better when MB30B were used. The mechanical properties of the clays filled nanocomposites vary accordingly and when MB30B is used better mechanical properties can be achieved. Tensile strength increases 41% at maximum as the CL30B loading is 5 wt.%, while elongation at break decreases dramatically. Impact strength can be improved up to 430% compared to the pure blend when 1 wt.% MB30B was used.  相似文献   

11.
Dispersibility of graphene sheets in polymer matrices and interfacial interaction are challenging for producing graphene-based high performance polymer nanocomposites. In this study, three kinds nanofillers; pristine graphene nanoplatelets (GNPs), graphene oxide (GO), and functionalized graphene sheet (FGS) were used to prepare polyurethane (PU) composite by in-situ polymerization. To evaluate the efficacy of functional groups on the graphene sheets, PU reinforced with GNPs, GO, and FGS were compared through tensile testing and dynamic mechanical thermal analysis. The Young's moduli of 2 wt% GO and FGS based PU nanocomposites were found significantly higher than that of same amount of GNPs loading as an evidence of the effect of functional groups on graphene sheets for the mechanical reinforcement. The strong interaction of FGS with PU was responsible to exhibit notably high modulus (25.8 MPa) of 2 wt% FGS/PU composite than the same amount of GNPs and GO loading even at elevated temperature (100 °C).  相似文献   

12.
Polyacrylonitrile (PAN)/Na-montmorillonite (Na-MMT)/SiO2 nanocomposites were synthesized via in-situ emulsion polymerization. The X-ray diffraction (XRD) measurements and transmission electron microscopy (TEM) observations show that the Na-MMT layers were exfoliated in polymerization and the nano materials are well dispersed in the polymer matrix. The thermogravimetric analysis (TGA) suggests that co-incorporating Na-MMT and SiO2 into the polymer matrix significantly enhances the thermal stability of the polymer. At same nano material loading, the PAN/Na-MMT/SiO2 nanocomposites show superior thermal stability with respect to the PAN/Na-MMT and PAN/SiO2 nanocomposites. The mechanical properties of the nanocomposites were also examined. It was found that the PAN/Na-MMT/SiO2 nanocomposites exhibit considerably enhanced moduli compared with the PAN/Na-MMT and PAN/SiO2 nanocomposites due to the synergistic reinforcing effect.  相似文献   

13.
Nanocomposites based on poly(styrene-co-hexylacrylate) copolymer and cellulose whiskers as the nanosize filler were prepared by in situ miniemulsion polymerization and their melt rheological behaviours were investigated under dynamic shear conditions. The effects of γ-methacryloxypropyl triethoxysilane (MPS) content along with the whisker loading were explored. In the absence of whiskers, a transition from a liquid- to a solid-like behaviour was observed when the polymer was synthesized in the presence of MPS. When cellulose nanofiller was added, the storage modulus G′ and the dynamic viscosities η of the nanocomposites increased monotonically with whisker content and the resulting materials displayed a solid-like behaviour. Above 2 wt.%. loading, a percolated interconnected whisker-whisker network is built up, producing a jump in the storage modulus and strong shear-thinning behaviour of the viscosity. However, as the nanocomposites were prepared in the presence of 3% of MPS, no enhancement nor in the storage modulus nor in the viscosity was observed up to 5 wt.%. of whisker loading. Such a phenomenon was ascribed to inhibition of build-up of the whisker network. The non-linear viscoelastic behaviour of the nanocomposites was also investigated and analysed in terms of the breakdown of different networks, namely the filler-filler and the polymer-filler networks.  相似文献   

14.
The efficiency of potassium succinate-g-polypropylene (KPPSA) as compatibilizer for the dispersion of clay in a high molecular weight polypropylene during melt mixing for the preparation of nanocomposites was evaluated and compared with maleic anhydride-g-polypropylene (PPMA). Nanocomposites were prepared by direct melt mixing and by masterbatch methods and the structure obtained was characterized by WAXD and TEM. The exfoliation and better dispersion of the organoclay was observed with KPPSA than PPMA. The dispersion of clay was found to be dependent on the method of preparation, type and the amount of compatibilizer used. The dispersion was better when the nanocomposites were prepared by two step masterbatch route than the single step direct mixing method. Flexural moduli and crystallization behavior were studied and correlated with the dispersion of organoclay in the PP matrix.  相似文献   

15.
Two types of montmorillonite (MMT), natural sodium montmorillonite (Na-MMT) and organically modified montmorillonite (OMMT), in different amounts of 1, 2, 5, 10 and 25 phr (parts per hundred resin), were dispersed in rigid poly (vinyl chloride) by two different methods: solution blending and solution blending + melt compounding. The effects on morphology, thermal and mechanical properties of the PVC/MMT nanocomposites were studied by varying the amount of Na-MMT and OMMT in both methods. SEM and XRD analysis revealed that possible intercalated and exfoliated structures were obtained in all of the PVC/MMT nanocomposites. Thermogravimetric analysis revealed that PVC/Na-MMT nanocomposites have better thermal stability than PVC/OMMT nanocomposites and PVC. In general, PVC/MMT nanocomposites prepared by solution blending + melt compounding revealed improved thermal properties compared to PVC/MMT nanocomposites prepared by solution blending. Vicat tests revealed a significant decrease in Vicat softening temperature of PVC/MMT nanocomposites prepared by solution blending + melt compounding compared to unfilled PVC.  相似文献   

16.
Synthetic boehmite alumina (BA) has been incorporated up to 8 wt% in high-density polyethylene (HDPE) and low-density polyethylene (LDPE) by melt compounding. The primary nominal particle sizes of the two BA grades used were 40 and 74 nm, respectively. The dispersion of the BA in PE matrices was investigated by scanning and transmission electron microscopy techniques (SEM and TEM). Specimens of the PE/BA nanocomposites were subjected to dynamic-mechanical thermal analysis (DMTA), static tensile and instrumented falling weight impact (IFWI) tests. It was established that BA was nanoscale dispersed in both HDPE and LDPE. According to DMTA, BA worked as reinforcing filler. This was confirmed in static mechanical tests, too. BA grades and contents influenced the static tensile and dynamic IFWI behaviors of the PE/BA nanocomposites differently. Surprisingly, BA incorporation enhanced the ductility (elongations at yield and break) of HDPE in contrast to LDPE. Unlike HDPE/BA nanocomposites, the perforation impact resistance of the LDPE/BA systems was reduced with increasing BA content at both ambient temperature and T = −30 °C. The lesser the reduction the higher the primary particle size of the BA was.  相似文献   

17.
Polyaniline/graphene nanocomposites (PANi/GR) were prepared via PANi covalent grafting from the surface of GR. The unique structure of hybrid nanosheets was formed with uniform PANi layer coating GR without phase separation appearing when the weight ratio of aniline-to-graphene was 1:1. The unique PANi/GR hybrid nanosheets as electrode material for supercapacitors have a specific capacitance as high as 922 F/g at 10 mV/s and still retain a specific capacitance of 106 F/g at a high scan rate of 1 V/s due to synergistic effect between PANi and GR. The capacitance retention was ∼90% after 1000 cycles, which is much better than that of pure PANi or other PANi nanocomposites. The enhanced capacitive performance of PANi/GR hybrid nanosheets makes them have potential application in developing high performance energy storage devices.  相似文献   

18.
The potential to improve the mechanical, thermal, and optical properties of poly(methyl methacrylate) (PMMA)/clay nanocomposites prepared with clay containing an organic modifier was investigated. Pristine sodium montmorillonite clay was modified using cocoamphodipropionate, which absorbs UVB in the 280–320 nm range, via ion exchange to enhance the compatibility between the clay platelets and the methyl methacrylate polymer matrix. PMMA/clay nanocomposites were synthesized via in situ free-radical polymerization. Three types of clay with various cation-exchange capacities (CEC) were used as inorganic layered materials in these organic–inorganic hybrid nanocomposites: CL42, CL120, and CL88 with CEC values of 116, 168, and 200 meq/100 g of clay, respectively. We characterized the effects of the organoclay dispersion on UV resistance, effectiveness as an O2 gas barrier, thermal stability, and mechanical properties of PMMA/clay nanocomposites. Gas permeability analysis demonstrated the excellent gas barrier properties of the nanocomposites, consistent with the intercalated or exfoliated morphologies observed. The optical properties were assessed using UV–Visible spectroscopy, which revealed that these materials have good optical clarity, UV resistance, and scratch resistance. The effect of the dispersion capability of organoclay on the thermal properties of PMMA/clay nanocomposites was investigated by thermogravimetric analysis and differential scanning calorimetry; these analyses revealed excellent thermal stability of some of the modified clay nanocomposites.  相似文献   

19.
The exfoliated polymer/layered double hydroxide (LDH) nanocomposite by UV-initiated photopolymerization of acrylate systems through an Irgacure 2959-modified LDH precursor (LDH-2959) as a photoinitiator complex was prepared. The LDH-2959 was obtained by the esterification of 2-hydroxy-4′-(2-hydroxyethoxy)-2-methylpropiophenone (Irgacure 2959) with thioglycolic acid, following by the addition reaction with 3-(2,3-epoxypropoxy)propyltrimethoxysilane (KH-560), finally intercalation into the sodium dodecyl sulfate-modified LDH. For comparison, the intercalated polymer/LDH nanocomposite was obtained with additive Irgacure 2959 addition. From the X-ray diffraction (XRD) measurements and HR-TEM observations, the LDH lost the ordered stacking-structure and well dispersed in the polymer matrix at 5 wt% LDH-2959 loading. The glass transition temperature of UV-cured exfoliated nanocomposites increased to 64 °C from 55 °C of pure polymer without LDH addition. The tensile strength was improved from 10.1 MPa to 25.2 MPa, as well the Persoz hardness enhanced greatly, while the elongation at break remained an acceptable level.  相似文献   

20.
The effect of organoclay on the mechanical and thermal properties of woven carbon fiber (CF)/compatibilized polypropylene (PPc) composites is investigated. Polypropylene–organoclay hybrids nanocomposites were prepared using a maleic anhydride-modified PP oligomer (PP-g-MA) as a compatibilizer. Different weight percentages of Nanomer® I-30E nanoclay were dispersed in PP/PP-g-MA (PPc) using a melt mixing method. The PPc/organoclay nanocomposite was then used to manufacture plain woven CF/PPc nanocomposites using molding compression process. CF/PPc/organoclay composites were characterized by different techniques, namely; dynamic mechanical analysis (DMA), fracture toughness and scanning electron microscope. The results revealed that at filler content 3% of organoclay, initiation and propagation interlaminar fracture toughness in mode I were improved significantly by 64% and 67% respectively, which could be explained by SEM at given weight as well; SEM images showed that in front of the tip, fibers pull out during initiation delamination accounting for fracture toughness improvement. Dynamic mechanical analysis showed enhancement in thermomechanical properties. With addition 3 wt.% of organoclay, the glass transition temperature increased by about 6 °C compared to neat CF/PPc composite indicating better heat resistance with addition of organoclay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号